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ABSTRACT

Spatial light modulators (SLMs) are being used in

correlation-based optical pattern recognition systems to

implement the Fourier domain filters. Currently available SLMs

have certain limitations with respect to the realizability of

these filters. Therefore it is necessary to incorporate the

SLM constraints in the design of the filters.

The design of a SLM-constrained minimum average

correlation energy (SLM-MACE) filter using the simulated

annealing-based optimization technique was investigated. The

SLM-MACE filter was synthesized for three different types of

constraints. The performance of the filter was evaluated in

terms of its recognition (discrimination) capabilities using

computer simulations. The correlation plane characteristics of

the SLM-MACE filter were found to be reasonably good. The SLM-

MACE filter yielded far better results than the analytical

MACE filter implemented on practical SLMs using the

constrained magnitude technique.

Further, the filter performance was evaluated in the

presence of noise in the input test images. This work
demonstrated the need to include the SLM constraints in the

filter design. Finally, a method is suggested to reduce the

computation time required for the synthesis of the SLM-MACE
filter.
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CHAPTER 1

Introduction

During the past two decades, there has been considerable

growth of interest in problems of pattern recognition and

image processing. Applications in this area include character

recognition, remote sensing, image compression, image

enhancement (for example, in medical diagnosis), speech

recognition, archaeology, industrial automation (machine part

recognition, automatic inspection), and target tracking

systems [i]. These expanding applications and the advent of

high speed digital computers with increased storage

capabilities have further fueled research into the area of

pattern recognition.

There are many digital electronic pattern recognition

systems which often involve non-real-time operations. However,

many military and space applications such as missile guidance,

vehicle tracking, and automated lander guidance in aerospace

missions involve certain real-time operations. Optical pattern

recognition (OPR) offers an attractive solution for such

applications because of its inherent parallel processing and

high-speed operation capabilities [2]. Several signal

processing operations such as Fourier transform (FT),

convolution, correlation, and spectral analysis can be carried

out more efficiently using optical techniques than with their

1



2

electronic counterparts [3]. Optical data processing therefore

represents an attractive alternative for potential commercial

applications such as robotics, automated product inspection,

and other civilian fields. In the next section, a brief

overview of the OPR techniques will be given.

_.l. Correlation-Based Optical

pattern Recoqnition

Two basic approaches to optical pattern recognition are

optical feature extraction (OFE), and optical correlation. In

case of OFE, certain geometrical properties of the input

object (for example, its edges) are computed. The results are

subsequently processed (usually by a digital computer) for

classification, employing certain preselected discriminant

functions. In the optical correlation approach a filter is

synthesized from the image of the reference object to be

identified. The input image to be tested for the presence of

the desired object is correlated with the filter function. The

maximum resultant cross-correlation value is compared to a

preselected threshold value to determine if the desired object

is present in the input image scene. The location of the

correlation peak determines the position of the desired object

in the input image. Basic optical correlators do not provide

invariance to distortions in the input image, for example, in-

plane rotations. Hence, to achieve general distortion

invariance, advanced techniques such as synthetic discriminant

functions and other methods are used [4].
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The correlation operation may be interpreted as a measure

of similarity between two functions (for example, two images),

and a similarity measure is the basis for any recognition

process. In 1963, Vander Lugt proposed a hologram-based

technique for constructing a matched spatial filter (MSF).

With this technique, it became possible to construct arbitrary

complex matched filters to detect a signal in a noisy

background by optical means. The MSF when used in a frequency

plane optical correlator forms an optical pattern recognition

system. The most common type of such a system is illustrated

by Figure I.i.

An input scene at plane _ denoted by _ (x,y) is

illuminated by laser light to form a diffraction pattern. This

pattern is focussed by a lens f_ on plane P_. The lens Z_

produces the spatial Fourier transform of _(x,y) , denoted by

_(u,v) , i.e.

(u,v) = (x,y)). (1.1)

The MSF denoted by H(u,v) is derived from a reference pattern

(x,y) and is placed at the focal plane _. It is basically

the conjugate of the Fourier transform of the reference

pattern, i.e.

v)= F; (u,v) . (1.2)
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where

F_ (u,v)--5r(f2(x,y)}, (1.3)

and * denotes the conjugate operation. The incoming pattern of

light from PI is diffracted by the MSF, thereby producing a

second diffraction pattern. This resultant pattern on _ is

the product of the transforms _(u,v) and H(u,v) . Finally, the

lens _ produces the inverse Fourier transform of this

product, which is the correlation function. It can be written

mathematically as

{fl(x,y)_f2(x,y) }= fl(u,v).H(u,v ) (1.4)

= Fl(u,v ).F_(u,v), (1.5)

and

:i(x,y)®_2(x,z):iI_1(x,,y,)_;(x,-x,z,-y)ax,az',

(1.s)

where _ denotes the correlation operation. If the input and

reference patterns are identical, then the operation is called

autocorre 1at ion.



Thus

): IF1(u,v)12 (1.7)

The correlation function of Eq. (1.6) is obtained at the

output plane P3. As mentioned earlier, the correlation peak

value is used to determine if the input image _(x,y) is

indeed the desired image to be recognized.

Optical systems (such as the one described above) which

use the Fourier transform property of a lens offer certain

unique advantages over electronic systems. The inherent two-

dimensional nature of an optical system permits it to accept

large two-dimensional arrays of data from a camera, slide, or

transparency very easily. A second advantage enjoyed by an

optical system is its capability for parallel computation,

that is, all the data points of an image pass through the

optical system simultaneously, i.e., in parallel. A third

advantage of an optical system is its ability to operate at

tremendous data rates. Since the signal travelling through a

passive optical system propagates at the speed of light, its

throughput is enormous. Finally, a fourth advantage of an

optical system is that the Fourier transform is relatively

simple to perform. Thus with the FT as the basic building

block, it is straightforward to design systems to perform

correlation, convolution, matched filtering, etc. [5].
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It is apparent, however, that there are certain tasks

needed of a pattern recognition system that are difficult or

impossible to perform by a purely optical system. One problem

is that simple optical systems by themselves cannot be used to

make decisions. The simplest type of decision task might be a

comparison of the output of an optical system with a stored

value, and this cannot be performed presently without help

from electronics. Thus, purely optical systems can be designed

to perform specific tasks (analogous to a "hard-wired"

electronic computer), but are not flexible like a programmable

general purpose digital electronic computer. The idea of

combining digital electronic computer technology with optical

systems thus follows quite naturally, as a means of applying

the advantage of optics to a wider range of problems. These

systems are called hybrid, since they are composed of both

optical and electronic subsystems.

3.2. Motivation for the Study

Since the introduction of the frequency plane correlator

by Vander Lugt, matched spatial filters (MSFs) have become

popular in optical pattern recognition systems. These MSFs

yield the highest possible signal-to-noise ratio (SNR) when

detecting a known signal (image) corrupted by additive white

noise [6]. However, MSFs do not produce sharp peaks and they

are light-inefficient, that is, the ratio of the output light

to input light power is only about 44 percent [7]. Further,

MSFs are complex in nature; hence, their use in optical

correlators requires the representation of both the magnitude
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and phase of the filter function. Also, MSFs are sensitive to

distortions in the input test images.

High speed interface devices known as spatial light

modulators (SLMs) are being developed to replace the film

transparencies that have been traditionally used as input

images and as MSFs in conventional optical correlators.

However, several SLMs of current interest can function only in

a phase-mostly mode, and thus cannot accommodate the complex

nature of the MSFs.

The concept of MSFs has been extended in recent years to

several types of distortion-invariant filters. The minimum

average correlation energy (MACE) [8] filter is one of them.

This filter attempts to minimize the sidelobe levels in the

entire correlation plane, while still allowing control of the

user-specified correlation peak value at the origin. Thus the

MACEfilter produces sharp correlation peaks facilitating easy

detection in the correlation plane. In the MACEfilter design,

training images are used which are sufficiently representative

of all the expected distortions (that is, 3-D distortions).

This is to reduce the filter sensitivity to the distortions.

The MACEfilter will be discussed in greater detail in Chapter

2.

As mentioned earlier, SLMs are used in optical

correlators at the input and filter planes. The various SLMs,

constructed on different media, have different constraints on

what is physically achievable in that medium. Since the SLM

medium is used to construct the filter in the Fourier domain
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of an optical processor, these physical constraints will also

be imposed on the filter in the Fourier domain. Since the

physical characteristics of an SLM are not taken into account

in the design of the above mentioned MACE filter, they specify

arbitrary complex values, and hence they cannot be implemented

on currently available SLMs.

In References [9] and [i0], correlation filters have been

suggested that incorporate the physical characteristics of a

given SLM in their design. Juday [9] has developed a set of

necessary conditions for optimizing an optical correlation

filter constrained by an amplitude-phase coupled SLM. Farn and

Goodman [iO] have demonstrated a technique for an optimal

filter given an arbitrary region of realizability, which

maximizes the output correlation peak and they have presented

a fast algorithm for the design. However, these SLM-

constrained filters do not take into account possible

distortions in the input images and therefore, there is a need

for the development of distortion-invariant filters which are

constrained to the region of realizability of the physical

characteristics of a given SLM. In Reference [3], a real-

valued MACE filter was developed for implementation using

real-valued SLMs. However, until very recently, no composite

filters had been developed, which could accommodate an

arbitrarily constrained SLM.

1.3. Objectives

In order to overcome the difficulties mentioned above,

the principal objective of the research leading to this report
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was chosen as the development of a technique to incorporate

the physical characteristics of a given SLM into a distortion-

invariant correlation filter design. The type of SLM

constraint considered was one in which there existed a cross

coupling between the amplitude and phase. The MACEfilter was

chosen for optimization, since it minimizes the average energy

over the correlation plane and maintains the user-specified

peak value at the origin. This way the sidelobes in the output

correlation plane are much smaller than the value at the

origin. This facilitates easy detection of the correlation

peak in the entire correlation plane. The simulated annealing

algorithm was used to perform the minimization of the

correlation energy function for this constrained MACEfilter.

The performance of this filter was to be evaluated on input

images with and without background noise.

!.4. Outline of the Report

This report is organized as follows. In Chapter 2,

various distortion-invariant pattern recognition filter

designs from the literature are reviewed. Chapter 2 also

discusses the characteristics of currently available spatial

light modulators (SLMs),

techniques under the

characteristics of an SLM.

and some filter optimization

constraints of the physical

In Chapter 3, the development of

the SLM constrained distortion-invariant filter is discussed,

along with the algorithm used for its synthesis. Chapter 4

presents simulation results used to evaluate the performance

of this constrained composite filter, along with a discussion
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of the results. In Chapter 5, a summary of results and

conclusions derived from the study are presented along with

recommendations for future work.



CHAPTER 2

Correlation-Based OPR Filters

As mentioned in Chapter i, in the field of correlation-

based optical pattern recognition systems, matched spatial

filters are optimal in the sense of maximum signal to noise

ratio (SNR). However, these filters perform poorly when the

input test images are subjected to distortions like in-plane

or out-of-plane rotations. In this chapter, a review of some

correlation-based distortion-invariant pattern recognition

filters proposed in the literature is presented. In particular

the MACE filter design is discussed in detail.

Recently, spatial light modulators (SLMs) are being used

to implement filters in the frequency plane of optical

correlators. Most currently available SLMs cannot encode fully

the complex-valued frequency response of the optical pattern

recognition filters that have been proposed by researchers.

Some filter design techniques proposed in the literature which

take into account the constraints imposed by the SLMs will be

reviewed in latter sections of this chapter.

2.1. Distortion-lnvariant Pattern

Recoqnition Filters

Various approaches have been advanced in recent years to

achieve general distortion invariance in optical pattern

recognition. Casasent [II] detailed a generalized method which

12
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uses a synthetic discriminant function (SDF) to form a

distortion-invariant MSF for use in optical correlators. The

SDF is a composite function of all the training images which

are deliberately distorted versions of the reference image.

Thus the SDF filter is a linear combination of the training

images, and it is designed to yield user-specified cross-

correlation values at the origin for all the training images.

The expectation is that this filter will correlate equally

well not only with the training images, but also with other

distorted versions of the reference image which are within the

distortion range of the training set images. A disadvantage

with the SDF filter is that while the specified correlation

value is obtained at the origin, there is a possibility of

large sidelobes in the correlation plane. Thus, the next step

was to design composite filters which will minimize the

sidelobe levels in the correlation plane.

Mahalanobis et al.[8] proposed the minimum average

correlation energy (MACE) filter which results in a sharp

correlation peak of a specified value at the origin due to the

minimization of the average correlation plane energy. As in

the SDF filter, training images are used to reduce the

sensitivity of the filter to distortions. In the following,

the MACE filter design is discussed.

Throughout this report, the images as well as the filters

are assumed to be in the discrete domain. The images and

filters consist of arrays of dimension NxN obtained by

discrete sampling of continuous signals. However, for
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convenience, these arrays are represented by vectors of size

dxl (d = NxN) through lexicographical ordering of their rows.

Boldface letters are used to denote vectors and matrices, and

lower case letters denote scalar quantities. Image and filter

sequences are identified by an overbar notation. Uppercase

symbols refer to the frequency plane terms, while lower case

symbols represent quantities in the space domain.

Let the data sequences xl(n), i = 1,2 ...... N=, represent

the training image sequences, where Nc is the number of images

in the training set, and Xi(k) denotes the DFT sequence of

xl(n), represented as a column vector X i of dimension d. The

matrix X with column vectors X i is denoted by

Z= [Z,,Z2..... ,X. ]. (2.10)

The vector h represents the filter sequence _(n] in the space

domain, and the vector H its DFT H(k) in the frequency

domain. The average correlation plane energy for all the

N t images is given by

_ z _ [ i f: (I;(k)I _ I_',(k)I')]. (2.11)
Ear" Nt i-1 -a *-1
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Now, Eq. (2.11) can be written in vector-matrix notation as

Emv , = H'DH, (2.12)

where the superscript + denotes the conjugate transpose

operation. D is a diagonal matrix of size dxd given by

:
(2.13)

The MACE filter is designed so as to minimize the average

correlation energy given by Eq. (2.12), while at the same time

the value of the correlation function at the origin equals a

user-specified value. The constraint at the origin of the

correlation plane can be written as

1 _ _i(k)_(k) = u i, (2.14)g_ (0) : k.1

where u i is the user-specified constraint value at the origin.

For all the training set images Eq. (2.14) can be written as

rs : u, (2.15)

where u is the Ntxl output constraint vector. Thus Ear e in Eq.

(2.12) is minimized subject to the constraints in Eq. (2.15)

using the Lagrange's Multiplier method.



This leads to the following filter [8]

II_c z = _r _ x (r D -_X) -i u. (2.16)

16

Although MACE filters produce sharp correlation peaks,

they appear to have two drawbacks. First of all, there is no

noise tolerance built into these filters. Secondly, these

filters seem to be more sensitive to non-training images than

other composite filters [12]. Some modifications to the MACE

filter have been proposed to overcome these problems.

To make the composite filters more robust against the

non-training images, Casasent and Ravichandran [13] proposed

the design of the Gaussian MACE (GMACE) filters where the

output correlation was constrained to be a broad Gaussian,

rather than a sharp function. Sudarshanan et al.[14] suggested

a compromise composite filter wherein the MACE filter design

was modified to accommodate the requirements of both a good

noise performance and a sharp correlation peak output.

2.2. Fi_ter Implementation

in Optical Correlators

So far in this chapter, some of the composite filters

designed for distortion-invariant pattern recognition, i.e.,

filters which are insensitive to distortions, have been

discussed. Another important consideration in the design of

optical correlation filters is their practical implementation

using available electro-optical devices. As mentioned in

Chapter i, in 1963, Vander Lugt [15] demonstrated a simple

hologram-based optical technique for synthesizing frequency-
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plane masks for coherent processors. This technique recorded

a complex filter function on a photographic film with the help

of an interferometric system [15]. In such a system, coherent

light having an amplitude transmittance equivalent to the

desired impulse response of the filter is made incident on a

lens. The resultant Fourier transform of the impulse response

is incident on the photographic film which records the complex

filter function. Lohmann and Paris [16] proposed an easier

method for constructing complex filters. They suggested using

a computer-aided plotter to draw the holograms which would be

used to realize the filters. The holograms would then be

recorded on a film. This eliminated the rather difficult task

of optically synthesizing the filter on the photographic film

as suggested by Vander Lugt.

Since the introduction of these filter implementation

techniques, various design algorithms for OPR filters were

proposed by researchers. However, the above discussed

techniques for filter implementation were found to be

unsuitable for certain real-time applications of OPR systems.

Such applications need the capability wherein the input images

as well as the reference filters can be changed rapidly. Thus,

in order to take advantage of the phenomenal processing speed

of an optical correlator system, high-speed interface devices,

known as Spatial Light Modulators, were introduced to replace

the holograms.
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_,2._. Spatial Light

Modulators {$LMs]

SLMs are the basic building blocks of OPR systems which

are used to implement the input images and filters. They

encode the phase and amplitude information of an image or a

filter onto an incident beam of coherent light as a function

of space. There are two types of SLMs, one which can be

addressed electrically and the other that can be optically

addressed. In the case of the former type, voltage or charge

is the control signal (for example, the Deformable Mirror

Device (DMD)), while light intensity is the control signal for

the latter type (for example, the Hughe's Liquid Crystal Light

Valve (LCLV)) [17].

However, there is a limitation on the currently available

SLMs with regard to the actual implementation of a filter on

them. Ideally, an SLM should be able to adjust both phase and

amplitude as required by a recognition filter. For all

currently available SLMs, one control signal (either optical

or electrical) is used to achieve the phase and amplitude

modulation. Hence, the phase and amplitude cannot be

controlled independently. In a DMD, the control signal not

only modulates phase but also changes the amplitude from

unity, though to a lesser extent, and vice-versa for the LCLV.

Hence, these are appropriately referred to as phase-mostly

filters (PMF) and amplitude-mostly filters (AMF),
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respectively. This fact will become clear for the case of the

DMD, when its practical operation is discussed in the next

section.

_.2.2. The Deformable Mirror

Device [DMD) SLM

Figure 2.1, reproduced from [18], shows a cutaway view of

a section of the deformable mirror device SLM. The DMD is

composed of an array of 128x128 pixel elements with each

element consisting of four reflective rectangular flaps hinged

on the corners. These are known as cantilever-beam deformable

mirrors. The flaps are drawn downward by an electrostatic

charge maintained on the electrode under the surface of each

pixel element [18]. It is this mirror deflection that is used

to modulate light [19]. Since each of the flaps is about 0.5

mil square, a deflection of about one degree will cause the

inner tip of the flap to displace through _ radians of phase

using laser light (Wavelength = 632.8 nm) [19]. Thus, the DMD

is primarily a spatial phase-modulator that permits the phase

at a given pixel element to be controlled over a continuous

phase range through an electrical control signal. Since the

pixel flaps move through a range of angles to the DMD surface,

there is some additional amplitude modulation of the light due

to the signal deflection.



-- 2O

HiNCE\
- \

F'LAP

Figure 2.1. Cutaway View of a Section of the

Deformable Mirror Device (DMD) S_4 [!8!
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SLMs form an integral part of optical correlator systems

today. For an optical correlator to be generally useful, the

input plane SLM must operate in real-time. In fact for most

applications, the filter plane SLM must operate at a much

faster rate. This is especially true if a large number of

filters need to be changed at a rapid rate, before a

correlation is detected. The DMD is faster than most SLMs, and

exceeds the speeds of common liquid crystal displays [20].

Hence, the DMD is a suitable SLM for use in an optical pattern

recognition system. In the next subsection, some filter

designs which accommodate the modulating characteristics of

available SLMs are discussed briefly.

2.2.3. Correlation-Based

Filters for SLMs

Since the time Vander Lugt introduced the matched spatial

filter, various filter designs were proposed by researchers.

Some of these were discussed in Section 2.1 of this chapter.

All these methods presuppose the use of continuous amplitude-

phase filters in the realized optical correlator. However, as

discussed in the last two subsections, programmable,

continuous amplitude-phase SLMs do not exist to date. Hence,

the utility of these filter designs in practical correlators

is severely limited. On the other hand, programmable SLMs

limited to quantized levels of amplitude or phase are

presently available. In anticipation of the availability of

these devices, models of the SLMs like the DMD, and filters

that could be synthesized on these SLMs were developed by
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researchers. The modifications of the classical MSF to get the

phase-only filter (POF) [21] and the binary phase-only filter

(BPOF) are among the most important, since they are easy to

implement on available SLMs such as the Magneto-Optic SLM.

The POF is identical to the MSF, except that its

magnitude is set to unity for all frequencies. In POFs, since

the amplitude transmittances are set to be constant, the

continuous phase is used to synthesize the filters on existing

phase-modulating SLMs. BPOFs are a simplified version of the

POFs. Here, the continuous phases of the POF are quantized

into two phase levels. The pixels in a BPOF take a value of +i

or -I depending upon their respective phase angles. Generally

the POF and BPOF have to be implemented on a phase-modulating

SLM. Several researchers have reported methods for optimizing

the conventional POFs and BPOFs based on various performance

measures. Some of these are discussed in the next subsection.

2.2.4. Filter Optimization

Techniques

Vijayakumar and Bahri [6] investigated theoretically the

optimality of the conventional POF. They proved that with

proper selection of the filter passband the conventional POF

yields the highest signal to noise ratio (SNR) among all

filters. The resulting filter (with the corresponding filter

passband) is termed the Optimal POF (OPOF). This concept of

optimizing an optical correlation filter constrained to a

particular SLM has proven to be an important subject for

research with the anticipated availability of SLMs with
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different operating characteristics. Accordingly, much work

has been devoted to this subject recently. Downie and Reid

[22] studied the optimization of BPOFs to obtain optimal peak-

correlation response and peak to sidelobe ratio. Recently,

Downie [23] investigated the design of BPOFs that maximize

some other filter performance criteria like SNR and their

ability to discriminate desired objects from the undesired

ones.

The design and simulations of the phase-encoded and

binary phase-encoded filters and their optimization by the

various researchers were based on the phase-only property of

the SLMs. They did not take into account the "phase-mostly"

nature of these devices, which actually modulate the amplitude

in addition to the phase as observed in Section 2.2.1 of this

chapter. Thus, some other filter optimization techniques were

proposed which did precisely that. But, as seen above, the

designs of an optimal filter were considered only in special

cases (e.g., BPOF design) [6,22-23]. Therefore, there is a

need to design an optimal filter, given a general

realizability constraint for an SLM.

2.2.5. Filter Optimization for

Cross-Coupled SLMs

Ideally, an SLM should adjust both phase and amplitude

independently. However, as observed for the DMD in Section

2.2.2 the single control parameter, namely, the voltage,

modulates the phase and amplitude simultaneously. This is

known as the cross coupling between phase and amplitude. The



24

actual cross coupling between the phase and amplitude may be

adjusted during the manufacture of the device. But, given that

the SLM is controlled through a single parameter (electrical

signal in the case of the DMD), one cannot achieve any

arbitrary combination of phase and amplitude. Rather, the

relationship between the phase and amplitude is fixed for all

the pixel elements, for a given SLM. The challenge is to

obtain an optimal filter within the constraints of the one-

parameter combination of phase and amplitude for each pixel

value of the filter.

Juday et al.[18] showed a simulation of optimizing an

amplitude-phase cross-coupled filter by a brute force

relaxation method of Juday and Daiuto [24]. They considered

the variation of the SLM phase to be quadratic in logarithm of

the amplitude. Figure 2.2, reproduced from [18], shows this

relationship between the phase and amplitude. As the

electrical signal S varies, the response of the DMD is

constrained to move along the curve. To start with, a POF is

computed and applied to the filter DMD. The amplitude and

phase values for the (m,n)th element of the conventional

matched filter (MF) is represented by the point MF(m,n). A POF

device response would correspond to the point POF(m,n).

However, the needed filter pixel values are constrained to lie

only on the curve. Retaining the phase value of the POF for

this (m,n)th pixel under the operating constraint, the actual

response to the calculated filter occurs at position CMF0(m,n )

(in Figure 2.2).
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Figure 2.2. The Amplitude-Phase Relationship used to

Synthesize the Cross-Coupled Filter [13]
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The filter optimization is continued by varying the

values of the filter DMD, pixel by pixel, until a maximum

correlation is observed. After all the pixel values have been

adjusted, the correlation function value of the filter is

compared to that of the last filter. The procedure is

terminated when this difference is less than some

predetermined value. Thus, the starting filter is CMF0, and it

is relaxed to the optimal final filter CMFf. The details of

this algorithm are given in Reference [24]. The computation

needed for this method is considerable. Juday [9] has proposed

another analytical technique to solve this same filter

optimization using the method of calculus of variations. This

new method considerably improves on the relaxation algorithm

discussed above, by reducing the amount of computation needed.

The filter synthesized using the above technique is

optimal in the sense of obtaining the maximal correlation

peak. However, it does not minimize the correlation plane

energy to yield low sidelobe levels as in the case of the MACE

filter. One of the objectives of the research presented in

this report was to do precisely that.

2.2.6. Correlation Filters for

Arbitrarily Constrained

Devices

Farn and Goodman [I0] have proposed a theory for the

optimal design of a correlation filter, given any arbitrary

realizability constraint. The filter is optimal in the sense

of maximizing the intensity at the output correlation peak.
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The constraint depends upon the physical modulating

characteristics of a given SLM. They have also proposed a fast

algorithm to design the filter. The SLM constraints for the

filter could be phase-only modulation, binary phase-only

modulation, or amplitude-phase cross coupling.

This technique and the one discussed in the previous

section represent the first attempts at optimizing a filter,

given any general constraints for the operation of an SLM.

However, all the optimization techniques for constrained

filters discussed so far are intended for the recognition of

a single image. There have been some attempts aimed at

designing distortion-invariant correlation filters which are

suitable for implementation on available SLMs and they are

discussed in the following section.

2.2.7. Distortion-Invariant

Correlation Filters

for SLMs

As mentioned before, all the composite filter designs

discussed at the beginning of this chapter have assumed the

availability of programmable, continuous complex valued SLMs.

In reality, this is not true. Hence, the focus of research has

shifted to developing distortion-invariant filters for optical

correlators that are capable of being implemented on SLMs with

limited modulation capabilities.

2.2.7.1. SDF-POFs and SDF-BPOFs. Homer and Gianino [25]

applied the phase-only concept to a conventional SDF.

Basically, they computed an SDF similar to the one proposed by
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Casasent [ii], and derived its POF version by setting the

magnitude to unity for all frequencies. This is known as the

SDF-POF. They also developed a simplified version of the SDF-

POF using biphase quantization. Here, the phase values of the

SDF-POF are quantized to just two values depending upon their

original phase values. This approach is similar to that of

designing a BPOF, and is referred to as an SDF-BPOF [25].

However, design of the SDF-POFs, and BPOFs using this

technique is incorrect because the filter modulation operator

(for example, POF or BPOF) is applied to a conventional SDF

filter after it is synthesized. This will change the

information content contributed to the filter from each

training image. Hence the correlation of such a filter with

each training image will not give the specified peak at the

origin.

Kallman

constructing

[26] has suggested a method of directly

distortion-invariant phase-only filters by

optimizing the peak-to-sidelobe ratio for a set of training

images. Although this method yields filters with desirable

qualities, the technique is computationally intensive, and

yields little information about the theory of distortion

invariant filter construction [27]. Also, it does not provide

a specified correlation peak for each training image.

2.2.7.2. Composite filters constrained to SLM modulating

characteristics. Jared and Ennis [27] have considered a

modification to the conventional SDF by including the filter

modulation (due to the SLM) in the synthesis process. They
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have considered POFs and BPOFs, but the technique is general

enough to be applied to filters of any modulation. In this

method, the actual filter that will be used to produce the

specified correlation peak response is explicitly used during

the SDF synthesis [27].

Balendra and Rajan [28] have developed a real-valued MACE

(RMACE) filter for implementation on available real-valued

SLMs. It is a modification to the MACE filter which cannot be

used with the existing SLMs due to its complex frequency

response. Similar to the MACE, the RMACE is designed to

minimize the average correlation energy under the constraints

of the user specified correlation peak outputs.

As seen in this section, a few distortion invariant

correlation filters which take into account the modulating

constraints of existing SLMs have been proposed by

researchers. However, the SLM constraints considered have been

special cases (e.g. Phase only, Binary Phase only, and real).

Thus, there is a need to develop distortion-invariant

composite filters which can be implemented on any arbitrarily

constrained SLM, for example, an amplitude-phase coupled SLM.

In Reference [29] Kumar has proposed a technique which

uses a relaxation algorithm to design a SDF filter for

implementation on arbitrarily constrained devices. The

criterion used for optimization in that case was such that the

Peak-to-Correlation Energy (PCE) [30] for the desired class of

objects is maximized. The approach used in this report

research for the design of the constrained composite filter is
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different from the above in the optimization method used.

Also, here the average correlation plane energy was sought to

be minimized while maintaining the user-specified values at

the origin of the output correlation plane.

2.3. Summary

This chapter focussed attention on two important areas of

filter design techniques for optical pattern recognition. One

of them is the development of correlation-based distortion-

invariant filters, and the other is the implementation of

these filters on currently available spatial light modulators.

In this report, the development of a composite filter for

implementation on an arbitrarily constrained SLM is studied.

In the following chapter, the optimization algorithm used to

synthesize this filter is discussed in detail.



CHAPTER3

SLM-Constrained MACE Filter

A number of filter design techniques that have been

proposed to achieve distortion-invariant pattern recognition

were reviewed in Chapter 2. The minimum average correlation

energy (MACE) filter is one such filter which produces a sharp

correlation peak in the output facilitating easy detection.

The MACE filter produces higher peak-to-sidelobe ratios than

the SDF filters. Hence, in this report the design of MACE

filters is considered. The need for an SLM-constrained MACE

filter is first discussed and then an algorithm for its

synthesis is presented.

3.1. The Need for an SLM-Constrained

MACE Filter

As mentioned in Chapter 2, SLMs are used in OPR systems

to implement the filters. Whereas a designed filter may have

arbitrary complex values, the SLM, as noted earlier, can

accommodate only a constrained set of values. If the

correlation-based OPR filters are to be implemented on such

SLMs, then the modulation characteristics of SLMs must be

included in their design.

One such SLM, namely, the DMD, has good potential for use

in OPR systems due to its advantages over other SLMs as

discussed in the previous chapter. Hence, there is a need to

31
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develop filters which can be implemented on the DMD. Most of

the SLM-constrained filter designs proposed in the literature

do not take into account distortions in the input images. Some

of these designs were discussed in Sections 2.2.4-2.2.7 of

Chapter 2.

As discussed in Chapter 2, the MACE filter is attractive

for use in Optical Correlators since it minimizes the average

correlation energy over the output correlation plane, while at

the same time maintaining the user-specified sharp correlation

peak. It is proposed in this report to apply the MACE design

concept to develop a method to design a SLM-constrained

distortion-invariant filter. This SLM-constrained MACE filter

can be implemented on a DMD with its phase-magnitude

constraints.

3.2. Development of the SLM-Constrained

MACE Filter

The problem at hand can be stated as follows. It is

required to design a composite filter which will incorporate

the possible distortions (for example, in-plane rotations) in

the input test images, and at the same time the filter pixels

are constrained to take on values which obey the physical

characteristics of a given SLM. The SLM-constrained MACE

filter is such that the correlation function levels are

minimized at all the points in the output plane except at the

origin where the response must have a user-specified value. Of

course the operating characteristics of the SLM should be

available beforehand.
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The required composite filter is synthesized from a set

of training images which represent the distorted versions of

the reference image. The SLM-constrained MACEfilter, like the

original MACEfilter, is synthesized in the discrete frequency

domain. The column vectors X, and H denote the i _ training

image and filter, respectively, in the frequency domain. The

matrix X is formed by arranging all the training image vectors

Xl ,i=I,2 ...... No, as columns of that matrix, where N t

denotes the number of images in the training set. The training

image vectors X i and filter vector H are of dimension d

(equal to the number of pixels in the reference image, namely,

NxN). Minimization of the correlation function values at all

the points in the output plane can be achieved by minimizing

the average correlation plane energy, which is given by

Ear.= S'DS, (3.I)

where + denotes the conjugate transpose

diagonal matrix D is given by

operation. The

1 _ Di ' (3.2)
D= N-_ i.i

where

D i (k,k) - IXi(k) 12
d ' (3.3)
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While minimizing Eq. (3.1), the correlation function

value at the origin for each of the training images is to be

maintained at a user specified value. This will facilitate

easy detection of the peak value at the origin in the output

plane. The correlation peak constraint for the i th training

image is given by

1

g;(0)=_X i's=ui, (3.4)

where u i is the user-specified peak value for the i th training

image.

Next, the constraints imposed by the modulating

properties of a given SLM need to be incorporated in the

design of the filter. In a single-parameter SLM like the DMD,

the phase and magnitude at a given pixel element are

controlled by the excitation voltage applied at that pixel

element. In such a case, there is no independent control over

the phase and magnitude of the filter pixels. This is known as

the phase-magnitude cross coupling for a given SLM, and is

dependent on the manufacturing process of the device. The

experimental data corresponding to the physical

characteristics of the DMD is available in the form of a table

with two columns. The entries in the first column of the table

correspond to the phase values which represent the phase

modulating capabilities of the SLM. The entries in the second

column give the respective magnitude values for each phase
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value. This table limits the complex pixel values that the

required filter can acquire so that it can be implemented on

a given SLM.

Thus, the filter design problem can be viewed as a

constrained optimization problem and can be summarized as

follows. The aim is to determine an optimal filter by

selecting its pixel values from among the phase-magnitude

value pairs given by a table such that the correlation plane

energy given by Eqn. (3.1) is minimized subject to the peak-

value constraints of Eqn. (3.4). Thus Eqn. (3.1) is the

objective function here. The latter part of the problem,

namely, minimizing Eqn. (3.1) subject to the constraints of

Eqn. (3.4) can be modified into a new single objective

function. This can be done by including in the new objective

function some penalty for violating the constraints.

The correlation peak constraints of Eqn. (3.4) can be

written as

Re(Xi'H)= u i
(3.5)

Im(Xi'H}= O.

Using Eqns. (3.1) and (3.5), the new objective function can be

written as

N¢ N=

E(H) = H+DH + E KIi [ RO(Xi" BI-ui] 2 + K2 E [ Im(Xx" H)] 2.
i-l i-I

(3.6)
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Here, the constraints of Eqn. (3.5) are used to introduce

quadratic penalty functions into the original objective

function.

In Eq. (3.6) the K1i's and _ are some positive constants

greater than I. The values for these constants will depend

upon the specified constraint values u i. For example, in a

two-class pattern recognition problem, the u i values for the

training images of the two classes will be different.

Therefore the weightage for the K1i's will be different for

the different ui's. The ratio between the K11's should be the

same as the ratio between the corresponding ui's. Thus, the

problem of minimizing Eqn. (3.1) subject to the constraints of

Eqn. (3.5) is reformulated into a problem of minimizing a

single objective function with the constraints of Eq. (3.5)

included within that objective function. Now the required

optimal filter K can be determined such that Eqn. (3.6) is

minimized under the constraints of the SLM modulating

characteristics. The optimization is commenced with small

values for the penalty constants and is continued with

gradually increasing values such that the constraints are not

violated and the objective function converges to a minimum.

The filter thus obtained is the SLM-constrained MACE filter.

The system variables in this optimization are the filter pixel

values.
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It is expected that the correlation function of this

filter with the training and non-training set images

evaluated at the origin will give values which are close to

the user-specified values at the origin. Of course, the non-

training images should be within the distortion range of the

training set images. The sidelobes in the correlation plane

are also expected to be minimized so that the values at the

origin will correspond to a peak and can be easily detected.

3.2.1. Optimization

Techniques

Several optimization techniques are available in the

literature and the choice of a particular algorithm would

depend upon the nature of the problem to be solved.

Optimization problems can be broadly divided into two

categories: those with continuous variables, and those with

discrete variables. The optimization problem at hand as

discussed in Section 3.2 basically falls into the second

category. However, the SLM constraints given by the phase-

magnitude data could be approximated by a mathematical

equation. The constraint equation so formed could be included

in the objective function of Eqn. (3.6) using the penalty

function technique. The entire problem could then be viewed as

an unconstrained minimization problem and it could solved

using the algorithms from the first category some of which

will be discussed here.

Methods of finding the minimum of a function of

continuous variables generally involve the evaluation of the



38

function values, their first partial derivatives, and

sometimes the second partial derivatives as well. Optimization

techniques which make use of partial derivatives are known as

gradient methods. The method of steepest descent is one such

gradient technique. This method starts by choosing arbitrary

values for the function variables. New values for the

variables are determined by evaluating the first derivative of

the function at their present values. This procedure is

continued until the derivative becomes zero or close to it. A

local minimum of the function is said to be reached at those

values of the variables.

The conjugate-gradient method of minimization is an

advanced form of the steepest descent method. The Fletcher-

Powell [31] version of the variable-metric algorithm is an

improved form of the conjugate gradient technique to minimize

a quadratic function with no more than n steps (where n is the

number of variables in the function). There is no scope for

discussion of the details of this algorithm here. Basically it

is a rapidly converging descent method.

It is important to note here that all these methods

require calculation of the first derivative of the function.

Hence they are not suitable for solving the optimization

problem discussed in Section 3.2. First of all, analytical

calculation of the first derivative of the function is

impossible here; hence, a numerical technique would have to be

used. Now, the number of variables involved here are very

large. For a 128x128 size image, the total number of variables
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are 16384. Using a numerical technique to determine the first

derivative would be very time-consuming. Also, the gradient

techniques do not perform very well when there are boundary

conditions specified for the function variables. This is the

case for the problem at hand because the filter pixel values

have to be within the given tabular data.

Now the second category of minimization techniques,

namely, those involving discrete variables, seem to be more

applicable to the problem at hand. Several direct-search

methods for multi-dimensional minimization are suggested in

the literature. These methods attempt to determine a global

minimum of the objective function by evaluating it at several

points rather than by calculating first derivatives. One

direct-search technique which has been found to be

particularly effective in certain applications is that of

Hookes and Jeeves [32], known as the Pattern Search technique.

However, its effectiveness has not been evaluated for the case

of a very large number of variables.

There is another category of optimization problems known

as combinatorial optimization. These could be generally

classified as belonging to the second category, namely, that

of discrete variables. Combinatorial optimization involves

problems of finding the optimum of an objective function

defined on a limited solution space. With this definition, the

problem discussed in Section 3.2 does seem to have some

similarities to a combinatorial optimization problem. This is

because the experimental data corresponding to the SLM
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characteristics does constitute the limited solution space

available to solve the minimization problem of Eqn. (3.6). An

optimization technique known as simulated annealing (SA) was

proposed by Kirkpatrick et ai.[33] to solve combinatorial

optimization problems. It is discussed in detail in the next

section along with its applicability to the problem at hand.

3.2.2. Solving the Optimization

Problem by Simulated Annealinq

The simulated annealing technique is a comparatively new

method and has been used in the recent past for solving

complex optimization problems. It is a form of stochastic

optimization, and is reported to perform well for problems

involving a large number of variables in applications such as

the design of computers [33], image processing [34], and

encoding of a binary phase filter [35]. It is easy to adapt

the SA technique to the problem at hand, namely one in which

there is a limited solution space. This refers to the

magnitude-phase constraints of the SLM. Also, the number of

variables involved in this problem, i.e., the filter pixels,

is very large. These factors lead to choosing the SA technique

to solve the SLM-constrained MACE filter optimization problem.

The idea of simulated annealing originated from the

metallurgical annealing process in a physical system. The

metallurgical annealing process is a thermal process for

obtaining low energy states of a system. The aim here is to

determine the state of global minimum energy of the system.

This is what the physicists call the ground state. The ground
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state is reached by a slow cooling of the system from a high

temperature to a low temperature. The cooling schedule must be

controlled appropriately and must be slow enough so that the

system does not get trapped in thermodynamically metastable

states. These are the local minima of the system. Conversely,

if the system is cooled too slowly then it will take an

unnecessarily long time to reach the ground state.

The lower energy states of the system can be achieved by

using an algorithm proposed by Metropolis et ai.[36]. This

procedure uses computer simulation for computing the

equilibrium distribution of a system composed of a set of

particles in a heat bath. At each step of this algorithm, a

particle is given a small random displacement and the

resulting change in the system energy _E is computed. The new

energy state of the system is accepted if AE S O, i.e., if the

displacement brings the system to a state of lower energy. If

AE > O, the new state is accepted with probability

P( E) = 1
I + exp[ AE ' (3.7)

where k is the Boltzmann constant and T is the temperature of

the heat bath. So a move to a higher energy state is accepted

in a limited way. The choice of P(_E) has the consequence

that the system approaches the Boltzmann distribution after

several iterations. This distribution properly describes the

state of thermodynamic equilibrium for a given T. This basic
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step is repeated many times until the system reaches its

ground state. Kirkpatrick et ai.[33] linked the annealing of

physical systems with combinatorial optimization and called it

simulated annealing.

When the SA technique is used to find the global minimum

of an objective function, the probability of being trapped in

local minima can be made very small. This is possible because

in addition to accepting transitions leading to a decrease in

function value, increases in the function value are also

accepted in a limited way. This makes it possible to climb out

of a local minimum of the function and approach the global

minimum.

The objective function that is sought to be minimized

using the SA technique is given by Eqn. (3.6). The system

variables to be determined in this optimization problem are

the pixel values for the filter H. The number of variables is

given by d=NxN, which is the size of the reference image,

hence, of the filter too.

Thus the minimization of an objective function using the

SA technique can be achieved by reducing a temperature

parameter from an initially high value to a low value, and

perturbing the system variables as the temperature changes.

Let the energy to be minimized

E(vi), i = 1,2 ..... d, where the

variables to be determined.

(given by Eqn. (3.6)) be

vi's are the function

The optimization is initiated by starting with a random
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configuration of _, and calculating the energy E(vi) . Here,

the v_'s are the phase values of the filter pixels and are

selected from among the phase-magnitude data available in a

tabular form. As mentioned in Section 3.2 of this chapter,

this data represents the physical constraints of the SLM. It

should be noted here that when a phase value for a filter

pixel is picked from the table its corresponding magnitude

value is also chosen to accommodate the phase-magnitude

coupling characteristics of the SLM. The phase-magnitude pairs

represent the complex values of the filter pixels.

Now, for every iteration the following steps are carried

out. Each of the system variables _ ,i = 1,2, .... d, is

randomly perturbed. The energy change AE caused by the random

perturbation A_ for the i tn variable is calculated as

follows

_E : En°_ - Eo_, (3.8)

where

(3.9)

and

Eola = E (vfla) (3.1o)

The perturbation A_ may be positive or negative and its

actual value will depend on the data from among which the
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filter pixels can accept values.

Now, the phases of the filter pixels are treated as the

system variables. When the phase of a filter pixel is

perturbed, the given table is searched for the new phase. The

corresponding phase-magnitude pair from the table forms the

complex value for that pixel. If AE >0, then the perturbation

is accepted, based on the acceptance probability given by

1
P(AE) = l (3.11)

I + exp(_)
T

where T is the temperature parameter which includes the

constant k also. To do this, random numbers uniformly

distributed in the interval (0,I) are generated. The random

number is compared with P(AE) . If it is less than P(_E) , the

perturbed configuration of _ is accepted, otherwise the

previous configuration is retained. This is repeated for all

the d variables. For the perturbed configuration of vi, the

energy difference AE is computed rather than evaluating the

entire objective function of Eqn. (3.6). This method of

calculating and updating the system energy is computationally

efficient. The probabilistic technique of accepting higher

energy values avoids the possibility of the system being

trapped in local minima.

The temperature control parameter T should be decreased

gradually at appropriate steps. At each temperature, the

optimization should continue long enough so that the system
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reaches a steady state. The method of decreasing the

temperature, and determining the number of variable

perturbations attempted at every temperature is known as the

annealing schedule, and is problem dependent. For the SLM-MACE

filter design problem the initial temperature was chosen to be

one-half the initial value of the objective function. The

temperature T was lowered exponentially as Tn = (0.95) n _,

where T n is the temperature at the n _h stage and _ is the

initial temperature. At each temperature, enough perturbations

are attempted such that there are ten accepted perturbations

for every system variable on the average (this amounts to 10d

accepted perturbations), or the number of attempts exceeds i00

times the number of variables before ten perturbations per

variable have been accepted. If the desired number of accepted

perturbations is not achieved at three successive

temperatures, the system is considered to have reached its

lowest energy state, and the optimization is concluded. This

is the terminating criterion for the algorithm.

Thus, simulated annealing is used for minimization by

first 'melting' the system being optimized at a high

effective temperature (the temperature used as a control

parameter), and then gradually lowering the temperature at

appropriate stages until the system 'freezes' and no further

changes occur.
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3.2.3. Algorithm

An algorithm to construct the SLM-constrained MACE filter

is presented below.

I. Obtain the training

•

•

1

images x-_, i= 1,2 .... ,N c, by

applying the various levels of distortions such as in-

plane rotations, scale changes, etc., to the reference

image(s), where N_ is the total number of images in the

training set.

Compute the two-dimensional Fourier transform of these

training set images as Xi , i = 1,2,...N t.

Order the elements of Xi lexicographically to obtain the

column vectors X i

d = NxN.

Determine the

elements are given by

N¢

1 12
D(m,m) - N_.d _-_ IXi(m)i.1

,i = I, 2, . . .,N_ of size dxl where,

diagonal matrix D, where its diagonal

(3.12)

• The next part of the algorithm involves determining the

filter K, such that the following objective function is

minimized, using the simulated annealing algorithm, as

described in the previous section.

E= H'DH÷

Nt N t

i-1
[ im(Xi.H) ] 2

(3.13)
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3.2.4. Selection of ui's

One issue that must be addressed here is the selection of

the user-specified correlation peaks at the origin of the

output correlation plane for each training image. These are

the u£ values in Eq. (3.13). Since the filter H is constrained

to a particular SLM characteristic, there is a maximum limit

to these output correlation values. For a single training

image this correlation value is given by Eq. (3.4). It can be

written in the one-dimensional continuous notation as

I = fX" (u)H(u)du = A e ]" , (3.14)

where

and

x(u) : :)):Ix(u)[ e

H(u) = _r(h(t))= [H(u) [e jeu_u) (3.15)

represent the image and filter respectively. The objective

here is to maximize I in Eq. (3.14) when the values of H(u)

are constrained to lie on the SLM operating curves (for

example, as in Figure 4.4). The method presented here follows

the technique suggested by Farn and Goodman [i0].
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Consider the equation

A(a) = Re[{[X'(u) H(u) du) e -j']

: fRe[X'(u) H(u) e]']du

= flX(u) llH(u)l cos[B,(u)-Sx(U)-a] du.

(3.16)

Here Eq. (3.16) is to be maximized over the region of

realizability of H, that is, the SLM constraint. Thus

H(u)maxA(a) = H(u)maxf iX(u) l IH(u) l cos[ 8H(u)- 8x(U)- • ] du.

(3.17)

Since H(u) can be chosen independently for each frequency u,

Eq. (3.17) can be written as

max f max (iH(u)cos[8_(u)_Ox(u )_a]) du.H(u) A(a) : IX(u)I H(u)

(3.18)

(3.18) to determine the maximum correlationCalculating Eq.

value directly

procedure can

will be very

be simplified

intermediate function defined as

computation intensive. The

as follows. Consider the

G(_) = max (ae[H(u)e-J°]}H(u)

max (iH(u) lcos [@H(u)_¢]}H(u)

(3.19)

The function G can be computed in advance as per Eq. (3.19)

since the region of realizability of the filter H (namely, the



SLM constraint) is known. Further G is periodic.

Substituting Eq. (3.19) in Eq. (3.18) gives

max fH(u) A(a)= IX(u) IG[a÷Sx(u)] du.
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(3.20)

It is much easier to calculate Eq. (3.20) since the function

G is already known.

The above equations can be written in discrete form. In

the following equations the overbar notation represents the

discrete form of the respective signals. The constraint

function is discretized by sampling its phase into N values

with increments of 6, where N is an integer.

Thus

8:2_/N. (3.21)

The phase-magnitude tabular data used in the optimization

procedure of the SLM-MACE filter (as explained in Section 3.2)

can be used here. The discrete version of Eq. (3.19) can be

written as

max (l_(k) icos [(nil(k)-n) 6] ),D(n) : _(k) n= 0,I, ... ,N-I ,

(3.22)

where n, can only take on integer values. In Eq. (3.22) the

H(k) values are chosen from the phase-magnitude data mentioned

above. Thus the values for D(n) can be computed as per Eq.

(3.22). The discrete version of Eq. (3.20) can be written as



below. The phase values of

quantized to the value nz6,

values. Thus

d-1

-A(n) = _ IF(k) ]-¢[n-nx(k) ],
k.O

5O

the sampled image _(k) are

where n x represents integer

n= 0, 1 .... ,N-I , (3.23)

where d is the total number of pixels in the digitized image

X(k) . Since the G(n) values are already known and it is

periodic, computing the values for the function A(n) is much

easier as opposed to solving Eq. 3.18. The maximum value of

the function A(n) gives the maximum possible correlation value

at the origin for the image x(t) if the filter is constrained

to lie on a given SLM operating curve.

3.3. Summary

In this chapter the development of the SLM-Constrained

MACE Filter was discussed along with the simulated annealing

technique of optimization which was used in the filter design.

The algorithm used for the synthesis of the filter was also

presented. In the following chapter the distortion-tolerance

performance of the SLM-Constrained MACE filter is evaluated

with the help of computer simulation results. The performance

of the filter is also evaluated in the presence of background

noise in the input image.



CHAPTER4

Performance Evaluation of

the SLM-MACEFilter

In Chapter 3 the development of the SLM-Constrained MACE

Filter was discussed. An algorithm for its construction was

also presented. In this chapter the distortion tolerance

properties of the SLM-Constrained MACE filter and its

performance in the presence of input noise are studied using

computer simulations.

4.1. Simulation of the SLM-

Constrained MACE Filter

The SLM-Constrained MACE filter was simulated on a

computer using the algorithm described in Section 3.2.3 of

Chapter 3. Henceforth this filter is referred to as the SLM-

MACE filter. The filter was synthesized to discriminate

between two images consisting of the landscape of Mars. These

images are referred to as marsl and mars2 and are shown in

Figures 4.1 and 4.2. The two images are classified as

belonging to Class I and Class II, respectively. These two

images of pixel size 32x32 are padded with zeroes to generate

64x64 pixel images. The SLM-MACE filter is simulated to

discriminate not only between the two reference images marsl

and mars2 but also between their distorted versions. The

distortions considered here are in-plane rotations.

51
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Figure 4.1. The Image marsl

Figure 4.2. The Image mars2
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The SLM-MACE filters were constructed using three

different constraints. Figures 4.3 and 4.4 show the first two

constraints referred to as CON1 and CON2 respectively. The

figures illustrate the magnitude-phase relationship that

should be maintained for the filter in order for it to be

implemented on an SLM with these constraints. The third

constraint considered was the Phase-Only Filter (POF) type.

For this constraint the magnitude is unity for all phase

values. The SLM-MACE filters were synthesized for the three

SLM constraints to address the two-class pattern recognition

problem mentioned earlier. The training set images for the

filters were evenly distributed within the angle of rotation

of the two images.

The database used to test the recognition

(classification) and distortion tolerance of the filters

consisted of nine images (training as well as non-training) of

each class. The nine images were obtained by rotating the

images marsl and mars2 through angles zero to eight degrees.

Besides their ability to distinguish between the two classes,

the filters are evaluated on the basis of their correlation

plane energy and the peak-to-sidelobe ratio (PSR) in the

correlation plane. The threshold used for separating Class I

from Class II was

T = 0.25u I + 0.75u 2 , (4.i)

where ui and u2 are the user-specified values for the filter
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response at the origin of the correlation plane for Class I

and Class II images, respectively. The weight for Class I was

kept low since uI > u2 by choice. The pattern classification

problem can be extended to the multiple classes case as well.

In that case the number of thresholds required to discriminate

between the different classes would be more than one. In the

next section the distortion test results for the SLM-MACE

filter are presented.

Two other filters were simulated on the computer for

comparison with the SLM-MACE filter. One is the analytical

MACE as discussed in Section 2.1 of Chapter 2. The MACE filter

so obtained has arbitrary complex values and thus cannot be

implemented on practical SLMs. To implement the analytic MACE

filter on a SLM with known operating characteristics, it was

modified as follows. At each frequency the phase value of the

MACE filter was retained while its magnitude value was changed

as per the phase-magnitude relationship of the constraints

(CON1, CON2, or the POF type). This modified MACE filter is

referred to as the Mod-MACE filter. The distortion test

results of the SLM-MACE filter are compared to that of the

MACE and Mod-MACE filters.

4.2. Distortion Test Results

The distortion-test results for the SLM-MACE filter along

with that of the MACE and the Mod-MACE filters are presented

in this section. All the filters were correlated with both

training and non-training images of Class I and Class II. The

peak value from the resulting correlation plane was compared
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to the threshold value T (Eq. 4.1). If the resulting

correlation peak value was greater than T, then the input

image was said to belong to Class I, otherwise it was

classified as a Class II image.

4.2.1. Initial Test Results

In the initial tests the training set for the filter

synthesis consisted of two images from Class I and Class II,

respectively. The training images for Class I consisted of two

rotated versions of marsl, where the angles of rotation were

zero and eight degrees. Similarly, the training images for

Class II were obtained from the image mars2. Using these four

training images three SLM-MACE filters were synthesized for

the constraints CON1, CON2, and POF.

Now the values at the origin of the output correlation

plane should be specified. As discussed in Section 3.2.4 of

Chapter 3 it is important to know the maximum permissible

output correlation peak values for each of the training images

for the three constraints. Thus the specified peaks should be

smaller than these maximum values. Using Eq. (3.23) the

maximum correlation values at the origin were computed and are

summarized in Table 4.1 below. The maximum correlation values

for the two extreme images from each class are shown in the

table. The corresponding values for the other images in the

database lie within the two extreme values shown for each

class. Thus, the specified correlation peak values must be

less than the least value shown in Table 4.1 for each class.
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Maximum Correlation Values at the Origin

I I I i I li illl

Image Constraint Constraint Constraint
CON1 CON2 POF

marsl.0 1.978E+06 1.803E+06 2.921E+06

marsl.8 2.456E+06 2.226E+06 3.583E+06

mars2.0 1.902E+06 1.731E+06 2.798E+06

mars2.8 2.372E+06 2.146E+06 3.449E+06

I i i

Correlation peak amplitudes of 0.80E+06 and 0.40E+06 were

specified for Class I and Class II images, respectively, for

the cases of the constraints CON1 and CON2. Correlation peak

amplitudes of 2.1E+06 and 1.05E+06 were specified for Class

I and Class II images for the case of the POF constraint.

Ideally one would specify a value of 0.0 for Class II images

so that there is sufficient difference between the values of

the two classes. This would facilitate maximum discrimination

between the two Classes. However, if the correlation value at

the origin is specified to be 0.0 then the sidelobes in the

correlation plane will be of values greater than 0.0. This

would result in an error in detection if the detector at the

output of the optical correlator is such that it looks for the

peak to determine the presence of a required image. To avoid

this the correlation peaks for the Class II images were

specified to be half those of Class I images. The MACE filter

and the Mod-MACE filter (for the constraints CON1, CON2 and

POF) were also synthesized with the above mentioned training
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set images. The user-specified correlation peak amplitudes for

these filters were the same as those specified for the

corresponding SLM-MACE filters.

The average correlation plane energy for the training

images is given by: Ear = H'DH. The Ear values obtained for the

SLM-MACE filters (CON1 and CON2) were 2.89E+09 and 1.23E+09

respectively. These values are relatively large compared to

the Ear of 3.32E+08 obtained for the corresponding MACE

filter. The energies of 5.37E+I0 and 1.482E+I0 were obtained

with the Mod-MACE filters for the constraints CON1 and CON2

respectively. These values are much higher than those obtained

for the corresponding SLM-MACE filters. The energy obtained

with the POF SLM-MACE filter was 4.18E+I0 which is much higher

than the corresponding energy of 2.29E+09 obtained with the

MACE filter. With the Mod-MACE (POF) filter the Ear obtained

was 5.37E+I0 which is much higher than that of the

corresponding SLM-MACE filter.

The average correlation plane energy of the training

images for a filter indicates its performance. A low value for

the Ear signifies a higher peak-to-sidelobe ratio (PSR),

sharper correlation peaks, and consequently more sensitivity

to distortions in the test image. This is because sharp peaks

are like delta functions with sharp fall-offs. Hence, if the

training images for the filter are far apart then correlation

peaks of the filter with the non-training images are also

expected to fall sharply. As observed in the previous
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paragraph, for a given set of training images the MACEfilter

produced the smallest Eav and the Mod-MACE the largest. The

SLM-MACE filter achieved an Ear of intermediate value. Then,

based on the above comments the MACE filter should be more

sensitive to the non-training images of a given class than the

SLM-MACE filter.

Figure 4.5 shows a typical three-dimensional plot of the

output correlation plane for the SLM-MACEfilter. Figures 4.6

and 4.7 show the correlation plane values along the X and Y

axes, respectively. It can be seen from these two figures that

the peak occurs at the origin of the correlation plane,

namely, position (33,33). Similar three-dimensional plots for

the MACE and Mod-MACE filters are shown in Figures 4.8 and

4.9, respectively. As observed in the plots, the correlation

peak is very sharp and the sidelobe suppression is excellent

in case of the MACEfilter. In case of the SLM-MACEfilter the

sidelobes are not as low as the MACE filter, but the peak is

sharp enough relative to the sidelobes, facilitating easy

detection. The correlation surface of the Mod-MACE filter is

a little poorer compared to the other two with respect to the

sidelobe suppression. All the three filters seem to be fairly

good in their correlation surface characteristics. It is to be

seen how they compare in distortion invariance and

classification.



Figure 4.5. The Correlation Plane Output for SLM-r_CE Filter
Correlation Peak = 0.8E+06
Correlation Plane Energy = 1.173E+09
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Figure 4.7. Correlation Plane Values Along Y-Axis

(Through Origin) for SLM-MACE Filter



i
Figure 4.8. The Correlation Plane Output for a MACE Filter

Correlation Peak = 0.8E+06

Correlation Plane Energy = 3.727E+08
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Figure 4.9. The Correlation Output Plane for a 5led-MACE
Filter
Correlation Peak = I.!56E-06
Correlation Plane Energy = 1.062E-!0
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The three SLM-MACE filters (synthesized for the three

constraints) and the corresponding MACEand Mod-MACE filters

were correlated with the training and non-training images of

Class I and Class II. Tables 4.2, 4.3, and 4.4 list the

correlation plane statistics for the Class I and Class II

training images for the SLM-MACE filters. For each tested

image the data include the specified value at the origin of

the correlation plane, the largest observed peak in the

correlation plane, the peak-to-sidelobe ratio (PSR) and the

correlation plane energy. In the case of all the tested images

the largest peak in the correlation plane occurred at the

origin. As seen from the tables, for the training images used

in the three SLM-MACE filters, the imposed constraints at the

origin of the correlation plane were satisfied. Also the PSR

values are reasonably high indicating small sidelobes.

Table 4.2. Correlation Plane Statistics for SLM-MACE Filter

(using Constraint CON1)

I I I I

Test Specified Largest PSR Corr.

Image Intensity Peak Plane

at the Observed Energy

origin

marsl.0 0.800E+06 0.80E+06 5.210 2.375E+09

marsl.8 0.800E+06 0.80E+06 3.743 3.785E+09

mars2.0 0.400E+06 0.40E+06 1.903 2.079E+09

mars2.8 0.400E+06 0o40E+06 2.071 3°346E+09
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Table 4.3. Correlation Plane Statistics for SLM-MACE Filter
(using Constraint CON2)

Test Specified Largest PSR Corr.

Image Intensity Peak Plane

at the Observed Energy

origin

marsl. O 0.800E+06 0.800E+06 4.115

marsl.8 0.800E+06 0.800E+06 3.534

1.173E+09

1.573E+09

mars2.0 0.400E+06 0.400E+06 1.824

mars2.8 0.400E+06 0.400E+06 2.399

9.434E+08

1.242E+09

Table 4.4. Correlation Plane Statistics for SLM-MACE filter

(Using POF Constraint)

I

Test Specified Largest

Image Intensity Peak
at the Observed

origin

PSR Corr.

Plane

Energy

marsl. O 2.10E+06 2.10E+06

marsl.8 2.10E+I0 2.10E+IO

3.466

2.567

3.432E+I0

5.434E+I0

mars2.0 1.05E+06 1.05E+06

mars2.8 1.05E+06 1.05E+06

1.620

1.323

3.030E+I0

4.820E+I0
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The same correlation plane statistics for the MACEfilter

and the Mod-MACE filters (for the three constraints) are shown

in Tables 4.5, 4.6, 4.7, and 4.8, respectively. Again for all

these filters, the largest peak observed in the correlation

plane occurred at the origin. The correlation plane energies

for the MACE filter are much lower than the SLM-MACEfilters

and consequently the PSR values are higher. In the case of the

Mod-MACE filter the PSR values are lower than the SLM-MACEand

MACE filters. From Table 4.5 it can be seen that the

correlation peaks obtained from the images used in the MACE

filter construction satisfied the imposed constraints at the

origin. However, the same is not true for the Mod-MACE filters

as observed in Tables 4.6, 4.7, and 4.8. Here the correlation

peaks are much higher than the values specified in the imposed

constraints. This will affect its recognition capability as

will be seen later on in this chapter.
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Table 4.5. Correlation Plane Statistics for the MACE filter

!

Test

Image

I

Specified Largest PSR Corr.

Intensity Peak Plane

at the Observed Energy

origin

marsl. O

marsl.8

0.80E+06 0.80E+06 7.232 3.727E+08

0.80E+08 0.80E+08 7.393 3.856E+08

mars2.0

mars2.8

0.40E+06 0.40E+06 3.426 2.746E+08

0.40E+06 0.4OE+06 3.881 2.961E+08

Table 4.6.

I II I

Test

Image

Correlation Plane Statistics for Mod-MACE filter

(Using Constraint CON1)

Specified

Intensity

at the

origin

Largest PSR Corr.
Peak Plane

Observed Energy

marsl. O

marsl.8

0.80E+06

0.80E+06

2.330E+06 2.859 3.821E+06

2.924E+06 2.963 6.054E+I0

mars2.0

mars2.8

0.40E+06

0.40E+06

1.634E+06 2.170 3.374E+I0

2.121E+06 2.294 5.372E+I0
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Table 4.7. Correlation Plane Statistics for Mod-MACE filter

(Using Constraint CON2)

I I

Test

Image

Specified Largest PSR Corr.

Intensity Peak Plane

at the Observed Energy

origin

marsl.0

marsl.8

0.80E+06 1.156E+06 2.881

0.80E+06 1.456E+06 2.962

1.062E+I0

1.672E+I0

mars2.0

mars2.8

0.40E+06 0.809E+06 2.192

0.40E+06 1.054E+06 2.261

0.936E+I0

1.482E+I0

Table 4.8. Correlation Plane Statistics for Mod-MACE filter

(Using Constraint POF)

Test

Image

Specified

Intensity

at the

origin

Largest PSR Corr.
Peak Plane

Observed Energy

marsl.0

marsl.8

2.10E+06

2.10E+06

2.330E+06 2.865 3.432E+I0

2.924E+06 2.970 5.434E+I0

mars2.0

mars2.8

1.05E+06

1.05E+06

1.634E+06 2.172 3.030E+I0

1.121E+06 2.298 4.820E+I0
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The correlation test results for the SLM-MACEfilter for

the training and non-training images along with those for the

MACEand Mod-MACE filters are summarized in Table 4.9 as Test

Numbers i through 7. The training images used for each class

for all the filters were the base images marsl and mars2

rotated through zero and eight degrees.

In order to classify the test images between the two

classes the threshold T was chosen as 0.5E+06 (from Eq. 4.1

with u I = 0.8E+06 and u 2 = 0.4E+06) for the SLM-MACE and Mod-

MACE filters (with constraints CON1 and CON2). The same

threshold was used for the MACE filter. In the case of the POF

Constraint, T = I.BI25E+06 (since u I = 2.1E+06 _nd u 2 =

1.05E+06) for the SLM-MACE and Mod-MACE filters. As seen in

Table 4.9 the SLM-MACE filters recognized the test images

correctly on every occasion. However, in the case of the MACE

filter some non-training images from Class I were

misclassified giving a recognition of 56 percent. This is

because the MACE filter gives sharper correlation peaks than

the SLM-MACE filter making it sensitive to non-training images

of a given class. Thus the performance of the SLM-MACE filter

was better than the MACE and Mod-MACE filters.

A graphical representation of these results is given in

Figures 4.10-4.14. In each of these figures the global

correlation peaks are plotted against their respective image

numbers. The Class I images are represented with a O and the

Class II images are represented with a _.
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The solid symbols denote the images used in the training set

for the two classes. The solid line denotes the threshold

level used for classifying the images. If the global

correlation peak for an image falls above this line then it is

classified as a Class I image, otherwise it is a Class II

image. As opposed to the SLM-MACE and MACE filters the imposed

constraints at the origin of the correlation plane are not met

in the case of the training images of the Mod-MACE filter. As

seen in Figure 4.14 this resulted in all the correlation peaks

falling above the threshold level for the Class II images for

this filter. Hence it achieved a recognition rate of 0 for

Class II.

4.2.2. Further Tests with Increased

Number of Training Images

As seen from the earlier test results, the distortion

tolerance of the MACE and Mod-MACE filters is not very

satisfactory. A way of improving the distortion tolerance

capability of these filters to the non-training images is to

increase the number of training images within the angles of

rotation. Tests 1-7 were repeated with three training images

for each class. These three images were the base image of each

class rotated through angles zero, four, and eight degrees,

respectively. The results of these tests are summarized in

Table 4.10 as Tests 8-14. As seen in Table 4.10, increasing

the number of training images resulted in i00 percent

recognition for both the Classes in the case of the MACE

filter (Test ii) which is an improvement over the
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corresponding MACEfilter from Table 4.9 (Test 4). But this is

not true of the Mod-MACE filters (Tests 12-14). These filters

continued to have 0 percent recognition rate for Class II

images. Although the global correlation peaks do occur at the

origin as desired (for the Mod-MACE filters), the imposed

constraints at the origin of the correlation plane are

violated leading to poor recognition.

However, there was an increase in the average correlation

plane energies for all the filters in comparison to the

corresponding energies from Table 4.9. This increase in

energies had an uneven effect on the average PSR values for

the two classes. This observation is made by comparing the

average PSR values for the corresponding filters in Tables 4.9

and 4.10, respectively. To further study the effects of

increasing the training set images the same seven tests were

repeated with training images spaced two degrees apart

(between the angles zero and eight degrees) for each Class.

Thus the number of training set images for each class is

increased to five per class. The results of these tests are

summarized in Table 4.11 as Tests 15-21.

As seen in Table 4.11, increasing the number of training

set images resulted in a further increase in the average

correlation plane energies and a decrease in the average PSR

values for all the filters. The recognition rate of the Mod-

MACE filters was not affected by the increase in the training

images. A brief summary of the distortion test results

presented so far is given in the next section.
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Table 4.9. Distortion Test Results for Filters Constructed
with two Training Images from each Class

I l I

Test

No.

Filter Object Percent Avg. Average

Class Correct PSR Energy

i • SLM-MACE

(CON1)

marsl i00 % 4.066 3.605E+09

mars2 i00 % 1.931 3.200E+09

• SLM-MACE

(CON2)

marsl i00 % 3.726 1.694E+09

mars2 I00 % 1.952 1.386E+09

• SLM-MACE

(POF)

marsl i00 % 2.821 5.236E+I0

mars2 i00 % 1.374 4.653E+I0

t MACE marsl 56 % 5.455 4.571E+08

mars2 i00 % 2.619 4.022E+08

• Mod-MACE

(CON1)

marsl I00 % 2.824 5.829E+I0

mars2 0 % 2.098 5.180E+I0

e Mod-MACE

(CON2)

marsl i00 % 2.849 1.620E+10

mars2 0 % 2.117 1.439E+I0

• Mod-MACE

(POF)

marsl i00 % 2.830 5.226E+I0

mars2 0 % 2.100 4.653E+I0
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Table 4.10. Distortion Test Results for Filters Constructed
with Three Training Images per Class

[ II I

Test

No.

Filter Object

Class

Percent Avg. Average

Correct PSR Energy

• SLM-MACE

(CON1)

marsl

mars2

i00 % 3.876 4.042E+09

i00 % 2.013 3.653E+09

. SLM-MACE

(CON2)

marsl

mars2

i00 % 4.119 2.082E+09

I00 % 1.922 1.763E+09

i0. SLM-MACE

(POF)

marsl

mars2

I00 % 3.503 5.236E+09

I00 % 1.592 4.653E+09

Ii. MACE marsl

mars2

I00 % 7.084 5.086E+08

i00 % 3.086 4.060E+08

12. Mod-MACE

(CON1)

marsl

mars2

i00 % 3.105 5.829E+I0

0 % 2.187 5.181E+I0

13. Mod-MACE

(CON 2 )

marsl

mars2

i00 % 3.135 1.620E+I0

0 % 2.198 1.440E+I0

14. Mod-MACE

(POF)

marsl

mars2

I00 % 3.105 5.829E+I0

0 % 2.186 5.181E+I0

i I II II •
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Table 4.11. Distortion Test Results for Filters Constructed

with five Training Images per Class

Test

No.

Filter Object Percent Avg. Average

Class Correct PSR Energy

15. SLM-MACE

(CON1)

marsl I00 % 3.360 5.140E+09

mars2 i00 % 1.775 4.616E+09

16. SLM-MACE

(CON2)

marsl i00 % 3.122 3.946E+09

mars2 i00 % 1.624 4.616E+09

17. SLM-MACE

(POF)

marsl I00 % 2.366 5.236E+09

mars2 I00 % 1.126 4.653E+09

18. MACE marsl i00 % 6.818 4.855E+08

mars2 i00 % 2.960 3.806E+08

19. Mod MACE

(CON1)

marsl I00 % 3.118 5.829E+I0

mars2 0 % 2.184 5.181E+I0

20. Mod MACE

(CON2)

marsl I00 % 3.149 1.620E+I0

mars2 0 % 2.198 1.439E+I0

21. Mod MACE

(POF)

marsl I00 % 3.118 5.829E+I0

mars2 0 % 2.184 5.181E+I0
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4.2.3. Summary of Results

Based on the distortion test results presented earlier,

it can be concluded that all the three composite filters,

namely, SLM-MACE, MACE, and Mod-MACE, provide acceptable

sidelobe suppression in the output correlation plane. The

correlation peaks in the case of the MACE filter are very

sharp and this makes it more sensitive to distortions in the

non-training images compared to the SLM-MACE filter.

Consequently, the MACE filter gives higher PSR values than the

SLM-MACE filters. But the PSR values of the SLM-MACE filters

are good enough to facilitate easy detection in the

correlation plane. Thus within a given range of distortion the

MACE filter requires more number of training images than the

SLM-MACE filter to achieve good recognition.

Increasing the number of training images resulted in an

increase in the average correlation plane energy for all the

filters. This increase in the energy had varying effects on

the PSR values for the two classes of images when tested with

a given filter. However, the most important difference between

the SLM-MACE and MACE filters is in their practical

implementation. As discussed in Chapter three, currently

available SLMs have limited phase and amplitude modulation

capabilities, and phase-magnitude cross coupling. If the MACE

filter were to be implemented on such SLMs then its

recognition capabilities are very poor as observed for the

Mod-MACE filter results seen earlier. However, the SLM

characteristics can be incorporated into the design of the
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SLM-MACEfilter so that the filter is constrained to take on

values within the operating constraints of a given SLM. Any

arbitrary SLM constraint can be used in the design of the SLM-

MACEfilter which makes it more suitable for implementation in

practical OPR systems.

4.3. Noise Test Results

In this section the effect of background noise (in the

input test images) on the performance of the filters is

studied. The distortion invariance performance of the SLM-MACE

filters is evaluated in the presence of zero-mean white noise

at the input. The performance of the filter is also studied in

the presence of a constant bias term added to all the pixels

in the test image. Similar test results for the MACE filter

are presented for comparison.

4.3.1. Noise Tests

To simulate the conditions under which input images would

be tested, zero-mean, white Gaussian noise was added to the

images before correlating them with the filter. Noise with

different signal-to-noise ratio values were added to all the

images in the database (including Class I and Class II, a

total of eighteen images). Figures 4.15 and 4.16 show the

images marsl and mars2 corrupted with noise. The SLM-MACE

filter (using Constraint CON2) synthesized with five training

set images of each Class (as in Test 16, Table 4.11) was used

to test all the noisy images in the database. As before the

user-specified correlation peak values for Class I and Class

II were 0.8E+06 and 0.4E+06.



84

Figure 4.15. Image marsl with noise
(SNR = i0 dB)

Figure 4.16. Image mars2 with noise
(SNR = i0 dS)
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The same threshold as in Test 16 (T = 0.5E+06) was used to

classify the test images as Class I or Class II images. The

results of this test for various SNR values are summarized in

Table 4.12. The same tests were performed for the

corresponding MACE filter (Test 18, Table 4.11). The results

of these tests are summarized in Table 4.13.

As seen in Table 4.12 the SLM-MACE filter tolerates noise

upto the i0 dB SNR level without any effect on its recognition

capabilities. The same is true of the MACE filter as seen in

Table 4.13. However, with the increase in the noise levels

there is a drop in the correlation plane PSR values. For SNR

values below the I0 dB level, the correlation plane value at

the origin is dominated by the sidelobes resulting in poor

recognition for those images.

Table 4.12. Noise Test Results for the SLM-MACE Filter (for

Constraint CON1)

SNR % Recognition PSR

in dB marsl mars2 marsl mars2

20 I00 % i00 % 3.23 1.64

15 i00 % I00 % 3.03 1.67

i0 i00 % I00 % 3.01 1.40

5 i00 % 22 % 2.62 1.38

0 i00 % 67 % 1.99 i.ii
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Table 4.13. Noise Test Results for the MACE filter

S N R % Recognition PSR

in dB mars mars2 marsl mars2

I

20 I00 % i00 % 6.20 2.54

15 I00 % i00 % 4.98 2.30

i0 i00 % i00 % 3.63 2.01

5 I00 % ii % 1.78 1.02

0 22 % 0 % i.i0 1.14

4.3.2. Bias Correction

One other factor which should be addressed while

simulating real testing conditions for the filter is the

effect of input bias [37]. A constant noise term added equally

to all the pixels of the input image can be considered a bias

term. This will affect the correlation peak and PSR values in

the correlation plane.

To correct this bias in the input image it is required

that the cross-correlation of the filter and a random (but

spatially constant) bias signal be zero [38]. Thus the

required condition can be written as

hZc = 0 , (4.2)

where c = [I 1 I ... I] is the spatially constant image in vector
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notation and h is the filter in the spatial domain. Thus the

inner product of the filter and a constant image should be

zero. This condition will ensure that uniform bias term added

to the input image will not degrade the peak values in the

correlation plane. This can be incorporated into the filter

design by including a constant image in the training set and

setting its corresponding correlation output to zero. To show

that the above scheme helps prevent the degradation of the

correlation plane PSR due to the addition of a bias term in

the input image, one example situation was simulated on the

computer.

An SLM-MACE filter was synthesized (using Constraint

CON2) for a single reference image of marsl. The output at the

origin of the correlation plane was specified as 0.8E+06.

Another SLM-MACE filter was synthesized for the same image

with an additional image included in the training set and its

correlation output at the origin was constrained as in Eq.

4.2. Similarly, two MACE filters were synthesized (with and

without the bias correction) for the same image marsl. All

these four filters were then correlated with different biased

versions of the training image marsl. The results of these

tests are summarized in Table 4.14. The table indicates the

PSR values obtained with the four filters for various bias

levels added to the training image.

As seen in Table 4.14 the PSR values for the MACE filter

(constructed without the bias correction) dropped steadily
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Table 4.14.

Bias

Correlation Test Results of the Filters with
Biased Versions of the Test Image

HI = Filter Without Bias Correction

H2 = Filter With Bias Correction

PSR Values for

MACE Filter SLM-MACE Filter

(Constraint CON2)

HI H2 HI H2

i0.0 9040.55 4094.67 9. 01436 8. 86552

20.0 4521.25 4094.69 9. 01434 8. 86552

30.0 3014.54 4094.69 9. 01432 8. 86552

40.0 2261.16 4094.69 9. 01430 8. 86552

50.0 1809.13 4094 .69 9. 01428 8 .86552

60.0 1507.77 4094.69 9. 01426 8. 86552

70.0 1292.49 4094.69 9. 01424 8. 86552

I li

with increasing bias levels. This situation was rectified in

the case of the MACE filter constructed with the bias

correction. Here the PSR values remained steady for similar

increases in the bias level. However, it was observed that in

the case of the SLM-MACE filter, increasing the bias levels in

the input image did not degrade its PSR values considerably.

There was not much difference in the PSR values for the SLM-

MACE filters constructed with and without the bias correction.



89

Thus it can be concluded that the SLM-MACE filter can tolerate

significant bias levels in the input image while maintaining

a reasonably steady PSR value.

_.4. Reducing Computation Time

As discussed in Chapter 3, the simulated annealing

technique of optimization is used for the synthesis of the

SLM-MACE filter. It took approximately five hours of CPU time

on a SUN SPARCI+ workstation to run the computer program for

the SLM-MACE filter synthesis. It would be desirable to modify

this procedure in some way so that less computation time is

required without affecting the distortion capabilities of the

filter. In this section one such method is presented along

with computer simulation results.

In real images most of the energy lies in the low

frequency region of the spectrum. In Reference [39] Bahri has

used square windows (centered at the origin) in the frequency

domain to reject the high frequency components of the

reference image. The Phase-Only filters created using this

reference image was designed to yield high SNR values for

detection of a single image corrupted with noise. A similar

technique can be used here to ignore some of the training

image pixels.

Since the filter pixels are the variables in the

optimization procedure, the computation time required for the

synthesis of the SLM-MACE filter (using optimization) depends

on the size of the images. If only a limited number of pixels

from the training images are used for the optimization then
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the computation time required could be reduced. The

corresponding filter pixels which are not considered for the

training images can then be set to zero. This scheme was

applied in the design of the SLM-MACEfilter in the following

manner.

A threshold is set for the magnitude of the frequency

components of the training images depending upon their range

of values. All training image pixels which have magnitudes

below this threshold are then ignored during the filter

synthesis. The threshold has to be selected such that only the

low magnitude frequency components are ignored. The same

algorithm as outlined in Section 3.2.3 (Chapter 3) is followed

with a few modifications. In Step 5 of that algorithm, the

diagonal elements of the diagonal matrix D are the average

magnitude squared values of all the training images. Those

diagonal elements of D which fall below a preset threshold are

set to zero. The corresponding pixels in the training images

are also set to zero. Now, a new diagonal matrix D is created

which includes only the nonzero diagonal elements of the

original D-matrix. This new diagonal matrix will have a

reduced number of diagonal elements than the original matrix.

Similarly, new training images are formed which include only

the pixels corresponding to the nonzero diagonal elements of

the original D-matrix.

The new D-matrix and training image vectors are then used

in the objective function (Eq. 3.13, Chapter 3). Thus the

filter H and the training image vectors X i in Eq. 3.13 have
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a reduced number of pixels. The SLM-MACEfilter is synthesized

by minimizing Eq. 3.13 subject to the SLM constraints. The

computation time required for the optimization will be reduced

depending upon the reduction in the number of pixels of the

original training images. The original filter is then

recreated by placing the optimized filter pixel values in

their respective positions and setting the rest of the filter

pixels to zero.

The SLM-MACE filter from Test 9 (Table 4.10) was re-

synthesized using this scheme. The number of training images

used were three per class, and the SLM constraint used was

CON2 (as in Test 9). The original training images and the

filter were of size 64x64. A Threshold of 0.15E+06 (based on

the D-Matrix values) was chosen for selecting the pixels for

the new training images from the original ones. The number of

pixels in the new training images and the filter was found to

be 2122. This is nearly half of the original number of pixels

(i.e. 4096). As expected the pixels which were turned 'OFF' in

the original training images were from the high frequency

region. The computation time taken for the synthesis of this

filter was nearly 50 percent of the original program which

amounts to considerable savings.

To evaluate the performance of this filter, all the

images in the database were correlated with it. The results of

this test are summarized in Table 4.15. The user specified

correlation peaks for the training images were 0.8E+06 and

0.4E+06 for Class I and Class II, respectively. The Threshold



92

used for classification was 0.5E+06 (as in Test 9). Figure

4.17 shows a typical three-dimensional plot of the correlation

plane for this filter. As seen in this figure the sidelobe

suppression is good with a reasonably sharp peak.

As seen in Table 4.15, the distortion invariance

properties of the filter are not affected by reducing the

number of pixels in the training images. However there is an

increase in the average correlation plane energies and a

consequent decrease in the average PSR values as compared to

the original filter (Test 9, Table 4.10).

Table 4.15. Correlation Plane Statistics for the SLM-MACE

Filter (Constraint CON2) Constructed with Reduced
Number of Pixels

II I

Object Percent Average
Class Correct PSR

Average
Correlation

Energy

marsl i00 % 3.370

mars2 I00 % 1.713

II I

3.237E+09

2.703E+09
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Figure 4.17. The Correlation Plane Output for SLC.:-MACE Filte _

(with Reduced Number of Pixels) Using Constrain-
CON2
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4.5. Summary

In this chapter the distortion tolerance properties of

the SLM-MACE filter were studied via computer simulations. The

filter performance was compared to that of the analytical

MACE, and the modified analytical MACE filters. Three

different constraints were considered for the SLM-MACE filter.

The SLM-MACE filter performed appreciably well in terms of its

distortion invariance to the non-training images. It also

performed well in the presence of noise and added bias levels

in the input images. On the other hand, the modified

analytical MACE filter showed poor recognition properties. A

method to reduce the computation time required for the

synthesis of the SLM-MACE filter was also proposed and

studied.



CHAPTER5

Summary and Recommendations

The research work leading to this report involved the

design of a correlation-based distortion-invariant filter

which can be used in an optical pattern recognition system.

Specifically, this filter can be implemented on available

spatial light modulators (SLMs) with their arbitrary

realizability constraints. The SLMs considered were those

exhibiting a phase-magnitude cross coupling (for example, a

deformable mirror device (DMD)).

5.!. Discussion

In this report the design of a SLM-constrained minimum

average correlation plane energy (MACE) filter was presented.

An algorithm for its synthesis was also discussed. The SLM-

MACE filters were then synthesized using three different

constraints. To evaluate the performance of this SLM-MACE

filter, distortion tests were carried out using computer

simulations.

To date no methods have been developed to design SLM-

constrained filters using purely analytical techniques. The

methods proposed in the literature involve the use of certain

optimization procedures. In this report the simulated

annealing technique of optimization was used in the design of

the SLM-MACE filter. The optimization criterion used was the

95
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minimization of the average correlation plane energy of the

filter. There were two specific constraints for this filter

design. One is maintaining the user-specified values at the

origin of the output correlation plane. The other is that the

filter can take on only those complex values which meet the

realizability constraints of a given SLM.

The distortion test results of the SLM-MACEfilter were

compared to that of the original analytical MACE filter and

its modified version. Basically the analytical MACEfilter was

modified such that it would meet the SLM constraints (since it

normally has arbitrary complex values which cannot be realized

on available SLMs). The characteristics of the correlation

planes obtained using the SLM-MACEfilter were good with low

sidelobes and a sharp correlation peak at the origin. However,

the energy minimization of the SLM-MACEfilter was not as good

as the analytical MACE filter. Using the SLM-MACEfilter the

non-training images were correctly identified as belonging to

the right class in an intra-class pattern recognition problem.

This demonstrated the invariance of the filter to distortions

in the input image.

On the other hand the modified analytical MACE filter

response was not good with respect to the correlation plane

energy minimization. Moreover it performed poorly in

identifying images as belonging to a particular class. This

was because the correlation peak constraints for the training

images were violated caused by the modification. Thus it can

be concluded that the MACE filter is not suitable for
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implementation on some presently available SLMs with their

limited modulating capabilities. Hence, in the future,

correlation-based optical pattern recognition filter designs

should take into account the realizability constraints of

available SLMs.

The SLM-MACE filter performed reasonably well when the

input test images were corrupted with white gaussian noise.

When the test images were corrupted with a constant bias term

there was no significant deterioration in its performance

unlike the analytical MACE filter. However, the computation

time involved in the synthesis of the SLM-MACE filter was

considerable. A technique to reduce the computation time was

also presented.

5.2. Recommendations

Although the SLM-MACE filter performs reasonably well and

can be implemented on currently available SLMs, the synthesis

procedure presented in this report has certain limitations.

Also, there are certain possible extensions to this research

and they are discussed in this section.

Some other optimization techniques which would require

less computation time for the design of the SLM-MACE filter

can be investigated. A possible variation to the SLM-MACE

filter design can be the inclusion of the constraints (at the

origin of the correlation plane) within the average

correlation plane energy equation of the MACE filter. This

way, these constraints will not have to be added to the

correlation plane energy function (for example, using the
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penalty function technique) as was done in this report. The

energy function which includes the constraints could then be

minimized using some optimization technique to determine the

MACE filter such that it is constrained to an SLM operating

region.

The SLM-MACE filter design concept can be extended to

include the minimization of the variance in the output due to

noise in the input images. Further, there is potential in

pursuing the use of the SLM-MACE filter to estimate the

orientation of an object as was done using the synthetic

estimation filter. The design for a SLM-constrained composite

filter can be modified by considering some other performance

measures for optimization, for example, the peak-to-

correlation energy or the signal-to-noise ratio.
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APPENDIX

C
C PROGRAMSLM MACE.FOR
C
C
C This program solves the SLM-constrained MACE filter problem

C using the simulated annealing method of optimization. The

C number of variables in the optimization are L = N*N (The

C size of the training images and the filter being NxN).
C

C A Total of upto i0 training images can be used in this

C program, i.e. 5 for Class I, and 5 for Class II.
C

C 'COMPUTEFN' is the routine which evaluates the objective

C function at the given variable values.
C

C

C ************************************************************

C

C Definitions of some important variable names used.

C ..-....--..-..ee..oeoeeeoeeeoeeoeee...............oeoeoeee.

C

C N,M == NxN or MxM are the Image/Filter dimensions.
C

C L == Total no. of pixels in the Images ( i.e. = NxN).
C

C KKK == Number of training Images.
C

Citer == Maximum number of iterations permitted.
C

C ased,bsed,sed == Contain the seed values for use in the

C random number generation function. These seed values are

C generated using the 'secnds' function in FORTRAN.
C

C vall, val2 == User-specified peak-values for Class I and

C Class II resp.
C

C kl, k2, k3 == Constants used in the Penalty functions for

C the constraints of the objective function.
C

C XX == Array of dimension LxKKK. The adjacent columns of this

C array contain the real and imaginary parts of the

C training Image vectors.
C

C dmat == Array of dimension L. Contains the average of the

C (magnitude)**2 of all the training Image vectors.
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Ccst == Array of dimension Lx2. Contains the SLM-contraints

C in two columns representing the phase and magitude

C respectively.
C

C delta == Size of the perturbations of the phase of the

C filter pixels, delta = (2*_)/(total number of samples)

C

C tempxl == Array of dimension L. It contains the temporary

C values of the phases of the filter pixels during

C optimization.
C

C X == Array of dimension L. It will contain the final phase

C values of the pixels of the optimized filter.
C

C objf == Contains the value of the objective function

C resulting from a successful perturbation of a variable

C during an iteration of the optimization process. The
C function 'COMPUTEFN' also returns the value of the

C objective function in 'objf'. At the end of the

C optimization 'objf' will contain the final objective
C function value.

C

C FF == Dimension 2. Used to store the temporary values of the

C objective function as a result of a perturbation.
C

C objo == Contains the value of the average correlation plane

C energy.
C

C nobjo == Used to store the temporary value of the

C correlation plane energy as a result of the perturbation

C of filter pixel phase value.
C

C con == Array of dimension KKKx2 .Holds the real and

C imaginary parts of the correlation peak constraints as
C the two entries of each row.

C

C ncon== Array of dimension KKKx2. Holds the temporary values
C of the above constraints.

C

C minX == array of dimension L. (see below for explanation)
C

C minobjf == Contains the least value of the objective

C function obtained during the optimization. After every

C iteration, the value in 'objf' is compared to 'minobjf'.

C The smaller of the two values is retained in 'minobjf'.

C The corresponding phase values of the filter pixels are

C stored in the array "minX'. This is done by calling
C SUBROUTINE REC.

C
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integer*2 N
integer mm,oncem,NN,M,L,KKK,iter,NO,devl
integer sed,ased,bsed,pp,count
integer txn,xn,accept,attempt
real sedl,sed2,sed3,minobjf,thi,nobjo,nobjol
parameter(M=64)
parameter(L=4096)
parameter(KKK=4)
integer*2 ipint(M,M)
real tempxl(L),X(L),dmat(L),FF(2),minX(L),ncon(KKK,2)
real ipr(M,M),XX(L,2*KKK),cst(I:4096,2),con(KKK,2)
real vall,val2,kl,k2,k3,rlfil,imfil,tempO
real randnuml,randnum2,delta,prob,temp,phase
real objo,objf,xi,xr,txi,txr,pai,oldf,perc
complex ipc(M,M),ipf(M,M),filt(L),filtl(M,M)
character filenamel*14,filename2*14,filename3*14
character filename4*14

common N

N=M

devl=6

sedl=40000.0

sed2=50000.0

sed3=90000.0

pp= 0

accept = 0

attempt = 0

NN= 0

oncem=O

mm=0

pai=3. 141592654

C Generate the seed values for use in

C generation function 'RAN'

ased=abs(2*(int(secnds(sedl)))+l)

sed=abs(2*(int(secnds(sed2)))+l)

bsed=abs(2*(int(secnds(sed3)))+l)

iter = i0000

vall=800000.O

va12=400000.O

kl=100.0

k2=200.0

k3=50.0

delta=3.0691964E-03

the random no.
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C 'images4.na' contains the names of the training images which

C will be read one after another. The real and imaginary part

C of the fourier transformed images are stored as columns of

C the array XX. The magnitude squared values of the fourier

C transformed image pixels are computed and stored in 'dmat'.

32

1

filenamel='images4.na'

open(unit=ll,file=filenamel,status='old ' )

read(ll,l,end=900)filename2

format(al2)

call getintl(ipint,filename2)

call int_rl(ipint, ipr)

do j=I,N

do i=l,N

ipc(i,j)=cmplx(ipr(i,j))

end do

end do

call tdfft(l.0,ipc,ipf)

mm=mm+l

jj=0

do i=l,N

do j=I,N

jj=jj+l

xx(jj,mm) = real(ipf(i,j))

xx(jj,mm+l) = aimag(ipf(i,j))

dmat(jj) = dmat(jj)+(XX(jj,mm)**2)+

(XX(jj,mm+l)**2)
end do

end do

mm=mm+ 1

C Get the next training image.

go to 32

C Take the average of all the elements of 'dmat'.

900 do i=l,L

dmat (i) =dmat (i)/float (KKK)

end do

C Initialize the array which will contain the SLM-constraints

C table.

do i=i,4096

do j=l,2

cst(i,j)=0.0

end do

end do



C Read the SLM-constraint data file into the array 'cst'.

open(unit=ll,file='cstraintn.in2048',status='old ' )

do i=I,2048

read(ll,*) (cst(i,j),9=l,2)

end do

close(unit=ll)
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C Determine the starting points for the optimization. Here the

C starting phase values for the filter pixels are those

C obtained from the previously solved Analytical MACE filter

C which was stored in the file "filt226.s64".

C 'GETCMP' is an unformatted-read routine which reads the

C complex filter into an array 'filtl'.

filename4='filt224.s64 '

call getcmp(filtl,filename4)
ii=0

do i=l,N

do j=I,N

ii=ii+l

phase=atan2(aimag(filtl(i,j)),real(filtl(i,9)))

if(phase.lt.0.0)then

phase=phase+(2.0*pai)
end if

tempxl(ii)=cst(nint(phase/delta),l)
end do

end do

C Initial Guess. This is another way of determining the

C starting points for the phase values of the filter pixels

C for optimization. Here the initial phase values are selected

C randomly from the SLM-constraints table.
C

C do i=l,L

C Nl=int(2048.0*ran(sed))

C tempxl(i)=cst(Nl,l)

C end do

C Evaluate the cost function with the initial guess. The

C routine 'COMPUTEFN'evaluates the objective function value at

C the given points of the filter pixel values.

420

$

do i=l,L

X(i)=tempxl(i)

end do

call computefn(NN,L,KKK,XX,X,dmat,cst,kl,k2,k3,

delta,vall,val2,objo,objf,con)
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if(oncem.ne.O)then
perc=((oldf-objo)/oldf)*100
oldf=objo
if(perc.le.(2.0))then

count=count+l
else

count=0
end if

else
oldf=objo

end if

C The initial value of the temperature 'tempO' is got from the

C starting value of the objective function 'objf'.

C 'tempO' does not change during the entire run of the

C optimization. The temperature parameter which is updated as

C the iterations progress is 'temp'. Here some data files are

C also created.

FF(1)=objf

temp0=objf/2.0

temp=temp0

call rec(L,X,minX,objf,minobjf)

write(25,*)0,objf

write(26,*)0,objo

write(27,*)oncem,objf

write(28,*)oncem,objo

if(count.ge.3)go to 500

oncem=oncem+l

C **** The optimization iterations begin here **********

write(devl,*)' PERFORMING OPTIMIZATION !! PLEASE WAIT'

write(devl,*)' '

do i=l,iter

do j=I,L

pp=pp+l

C Generate a random no. to determine whether a positive or

C negative perturbation be caused for each variable.

randnuml=ran(ased)

if(randnuml.le.0.5)then

x(j)=tempxl(j)+(delta)

if((nint(X(j)/delta)).gt.2048)then

X(j)=delta

end if

else

X(j)=tempxl(j)-(delta)

if((nint(X(j)/delta)).it.l)then
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X(j) =2.0*pal
end if

end if

C The new objective function value due to the perturbation is

C computed here and its value is stored in FF(2). The old

C value of the objective function is stored in FF(1).

C Note: Here the entire objective function is not evaluated.

C Rather the change in the old objective function value caused

C by the perturbation is computed.

txn=nint(tempxl(j)/delta)

txr=cst(txn,2)*cos(cst(txn,l))

txi=cst(txn,2)*sin(cst(txn,l))

xn=nint(X(j)/delta)

xr=cst(xn,2)*cos(cst(xn,l))

xi=cst(xn,2)*sin(cst(xn,l))

nobjo=objo-(dmat(j)*(txr**2+txi**2))+(dmat(j)*

(xr**2+xi**2))

mm=O

do ii=I,KKK

mm=mm+l

ncon(ii, i) =con(ii, i) + (XX(j,mm) * (xr-txr))

+ (XX(j, mm+l) * (xi-txi))

ncon(ii, 2) =con(ii, 2) +(XX(j,mm) * (xi-txi))

+ (XX (j, ram+l) * (txr-xr))

mm=mm+ 1

end do

nobjol=0.O

jj=0

kk=KKK/2

do ii=I,KKK-I,2

jj=jj+l
kk=kk+l

nobjol=nobjol+(k3*((ncon(jj,l)-vall)**2))+

(kl*((ncon(kk, l)-val2)**2)) +

(k2*(ncon(ii,2)**2))+(k2*(ncon(ii+l,2)**2))

end do

FF(2)=nobjo+nobjol

C If the new objective function value (i.e. due to the

C perturbation) is smaller than the current value then the

C perturbation is accepted, and the objective function value

C 'objf' is updated along with all the variables used to

C to compute it. For an accepted perturbation the counter

C 'accept' is incremented.



if(FF(2) .it. FF(1))then
FF(1) =FF(2)

objo=nobjo

do ii=l, KKK

con (ii, i) =ncon (ii, I)

con(ii,2)=ncon(ii,2)

end do

objf=FF(2)

tempxl (j)=X (j)
accept=accept+l

go to 701
end if
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C If the perturbation results in an increase in the objective

C function value then, it will only be accepted with a certain

C probability, computed in the variable 'prob' below. Again if

C this perturbation is accepted then the objective function

C value 'objf' is updated along with the variables used to

C compute it.

thi=(FF(2)-FF(1))/temp

if(thi.ge.80.O)then

thi=80.O

elseif(thi.le.0.000OOl)then

thi=0.O

end if

prob=l.0/(l.0+exp(thi))

randnum2=ran(bsed)

if(randnum2.1t.prob)then

FF(1)=FF(2)

objo=nobjo

do ii=I,KKK

con(ii,l)=ncon(ii,l)

con(ii,2)=ncon(ii,2)

end do

objf=FF(2)

tempxl (j) =X (j)

accept=accept+l

go to 701
end if

C If the perturbation is not accepted then the filter pixel

C value is restored to its previous value.

701

$

X(j) =tempxl (j)

if (objf. it.minobjf)

rec (L, X,minX, obj f,minobjf)
end do

write (25, *) i, objf

write (26,*) i, objo
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C **** Updating the Temperature parameter ************
C
C If the no. of accepted perturbations >= lOxL then update the

C temperature parameter 'temp', and proceed. Initialize the

C counter 'attempt', 'accept'.

if(accept.ge.10*L)then

temp=((0.98)**i)*temp0

accept=0

pp=0

attempt=0

end if

C If the no. of attempted perturbations (without acceptance)

C is >= lOOxL then update the temperature parameter and make

C a note of this fact by incrementing the counter

C 'attempt'.

if(pp.ge.100*L)then

temp=((O.98)**i)*temp0

accept=0

pp=O

attempt=attempt+l
end if

C If the above has occurred thrice continuously, then

C terminate the optimization. This is the convergence test. If
C so then branch to 200.

if(attempt.ge.3)then

attempt=0

accept=0

go to 200
end if

if(temp.le.(l. OE-04))then

attempt=0

accept=0

go to 200
end if

779 end do

C If the convergence criterion is not met after 'iter'

C iterations, then quit the program. ( This so that the

C program does not get into an endless loop).

write (devl, *) ' '

write(devl,*)' **************************** ,
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2O0

write(devl,*)' ERROR ERROR ERROR '

write(devl,*)' **************************** '

write (devl, *) ' '

write(devl,*)' No convergence after ',i,' iterations'

go to 300

write (devl,*)

write(devl,*)' ***************************** '

write(devl,*)' Converged after ',i,' iterations'

C 'Minobjf' contains the least (minimum) value of the

C objective function encountered during the optimization. The

C phase values corresponding to this minimum value are stored

C in the array 'minX' (of dimension L). If the final value of

C the objective function (at the end of the optimization) is

C not the least then the least value is taken.

300 if(objf.gt.minobjf)then

do zz=l,L

X(zz)=minX(zz)

end do

end if

callcomputefn(NN,L,KKK,XX,X,dmat,cst,kl,k2,k3,delta,

$ vall,val2,objo,objf,con)

write(devl,*)' '

write(devl,*)' The temp is',temp

write(devl,*)' '

C The optimization is repeated with increased values of the

C constraints penalty violation constants 'KI', 'K2', 'K3'.

if(oncem.ne.20)then

kl=kl+6.0

k2=k2+12.0

k3=k3+3.0

write(27,*)oncem,objf

write(28,*)oncem,objo

go to 420
end if

C Using the phase values of the filter pixels from the array

C 'X' pick out their corresponding magnitude values and

C compute the complex filter pixel values. Store these complex

C filter pixel values in the array 'filt'.



5OO do i=l,L

N0=nint (X(i)/delta)

rlfil=cst (N0,2) *cos (cst (N0, i) )

imfil=cst (N0,2) *sin (cst (N0, i) )

filt (i) =cmplx(rlfil, imfil)

end do
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C Arrange the filter from a vector form into a matrix form.

jj=O

do i=l,N

do j=I,N

jj=jj+l
filtl(i,j)=filt(jj)

end do

end do

C Save the final filter in a file for future correlations.

$

filename3='filtthesis.s64'

open(unit=14,file=filename3,form='unformatted'

,status='unknown')

write(14)filtl
close(unit=14)

C Write the final value of the objective function and
C constraints.

write(devl,*)'Total Objective fn. value is',objf

write(devl,*)'The Correlation Energy is',objo

write(devl,*)'Constants kl,k2,k3 are',kl,k2,k3

write(devl,*)'The Constraints (real,imag) are:'

do i=I,KKK

write(devl,*)con(i,l),con(i,2)
end do

stop
end
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subroutine rec(L,X,minX,objf,minobjf)

C ************************************************************

C

C (input) L == Dimension of the array X defined in the main

C program above.

C

C (input) X == Array of dimension L containing the current

C phase values of the filter pixels.

C

C (input) objf == Contains the value of the objective function

C evaluated from the array X.

C

C (output) minx == Array of dimension L. The values of X are
C stored into 'minX'

C

C (output) minobjf == The value from 'objf' is stored into

C 'minobjf'
C

**************************************************************

real X(L),minX(L),objf,minobjf

do i=l,L

minX(i)=X(i)

end do

minobjf=objf

return

end

subroutine computefn(NN,L,KKK,XX,X,dmat,cst,kl,k2,k3,

$ delta,vall,val2,objo,objf,con)

C ************************************************************

C

C A routine to calculate the value of the objective function,

C the value of the correlation energy plane, and value of the

C constraints. XX is a 2 dimensional array containing the real

C part of the elements of the reference image in the first

C column and the imaginary parts of the elements in the second

C column. X is a one dimensional array. The elements of this

C array correspond to the phase values of the filter pixels.

C

C

C NN (input)

C

C L (input)



115

C XX (input array) == Each of the columns correspond to the

real and imaginary part of the fourier transformed

images.

C

C

C

C X

C

C

(input array) == Contains the phase values of the filter

pixels.

Ccst (input array) == Contains the SLM constraint table.

C

C KI, K2, K3 (input) == as defined in the main program.

C

C delta (input) == as defined in the main program.

C

C vall, val2 (input) == as defined in the main program.

C

C objo,objf (output) == correlation plane energy value, and

C the objective function value respectively.
C

C con (output array) == Correlation plane constraints.
C

C ************************************************************

integer NN,L,KKK,num, i,j,jj

real XX(L,20),X(L),cst(4096,2),kl,k2,k3

real objo,objf,objol,delta,con(KKK, 2),dmat(L)

real rlf,imf,ave,vall,val2

objo=O.0

objol=0.O

objf=0.0
ave=0.O

do i=I,KKK

con(i,l)=0.0

con(i,2)=O.0

end do

$

$

do j=I,L

num=nint (X (j )/delta)

rlf=cst (num, 2) *cos (cst (num, i) )

imf=cst (num, 2) *sin (cst (hum, i) )

objo=objo + (dmat(j)*(rlf**2+imf**2))
mm= 0

do i=l, KKK

ram=ram+ 1

con (i, I) =con(i, i) +

( (XX(j ,mm) *rlf) + (XX(9, mm+l) *imf) )

con (i, 2) =con (i, 2) +

( (XX (j,mm) *imf) - (XX (j,mm+l) *rlf) )
mm=mm+l

end do

end do
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obJo1=O.O
J=O
JJ=KKK/2

do iII,KKK-I, 2

J=j+l

jj=jj+1
objol=objol + (k3*((con(j,1)-vall)**2))+

$ (kl* ((con(jj, 1)-val2) **2) )+

$ (k2* (con (i, 2) **2) )+ (k2* (con (i+l, 2) *.2) )

end do

objf=objo + objol

return

end

subroutine getlntl(array,arrayname)

C ************************************************************

C

C A routine to read an integer N by N array stored in an
C 'unformatted' format.

C

C

C arrayname (input) == Name of file containing the array

C array (output) == Integer array from the file arrayname
C

C ************************************************************

common N

integer*2 array(N,N),N

character*14 arrayname

open(unit=8,file=arrayname,form='unformatted',

$ status='old')

print *,' '

print *,'Reading the file '//arrayname

read(8) array

close(unit=8)

print *,'File transfer completed.'

print *,' '

return

end
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subroutine getcmp(array,arrayname)

C ************************************************************

C

C A routine to read a complex N by N array stored in an
C 'unformatted' format.

C

C

C arrayname (input) == Name of file containing the array

C array (output) == Array from the file arrayname
C

**************************************************************

common N

integer*2 N

complex array(N,N)

character*f4 arrayname

open(unit=8,file=arrayname,form='unformatted',

$ status='old')

print *,' '

print *,'Reading the file "//arrayname

read(8) array
close(unit=8)

print *,'File transfer completed.'

print *,' '

return

end


